中考網(wǎng)
全國(guó)站
快捷導(dǎo)航 中考政策指南 2024熱門(mén)中考資訊 中考成績(jī)查詢 歷年中考分?jǐn)?shù)線 中考志愿填報(bào) 各地2019中考大事記 中考真題及答案大全 歷年中考作文大全 返回首頁(yè)
您現(xiàn)在的位置:中考 > 知識(shí)點(diǎn)庫(kù) > 初中數(shù)學(xué)知識(shí)點(diǎn) > 因式分解 > 正文

2023年初中數(shù)學(xué)因式分解習(xí)題大全

來(lái)源:網(wǎng)絡(luò)資源 2022-11-09 19:51:24

中考真題

智能內(nèi)容

一.填空題(共10小題)

1.已知x+y=10,xy=16,則x2y+xy2的值為 .

2.兩位同學(xué)將一個(gè)二次三項(xiàng)式分解因式,一位同學(xué)因看錯(cuò)了一次項(xiàng)系數(shù)而分解成2(x﹣1)(x﹣9);另一位同學(xué)因看錯(cuò)了常數(shù)項(xiàng)分解成2(x﹣2)(x﹣4),請(qǐng)你將原多項(xiàng)式因式分解正確的結(jié)果寫(xiě)出來(lái): .

3.若多項(xiàng)式x2+mx+4能用完全平方公式分解因式,則m的值是 .

4.分解因式:4x2﹣4x﹣3= .

5.利用因式分解計(jì)算:2022+202×196+982= .

6.△ABC三邊a,b,c滿足a2+b2+c2=ab+bc+ca,則△ABC的形狀是 .

7.計(jì)算:12﹣22+32﹣42+52﹣62+…﹣1002+1012= .

8.定義運(yùn)算a★b=(1﹣a)b,下面給出了關(guān)于這種運(yùn)算的四個(gè)結(jié)論:

①2★(﹣2)=3

②a★b=b★a

③若a+b=0,則(a★a)+(b★b)=2ab

④若a★b=0,則a=1或b=0.

其中正確結(jié)論的序號(hào)是 (填上你認(rèn)為正確的所有結(jié)論的序號(hào)).

9.如果1+a+a2+a3=0,代數(shù)式a+a2+a3+a4+a5+a6+a7+a8= .

10.若多項(xiàng)式x2﹣6x﹣b可化為(x+a)2﹣1,則b的值是 .

二.解答題(共20小題)

11.已知n為整數(shù),試說(shuō)明(n+7)2﹣(n﹣3)2的值一定能被20整除.

12.因式分解:4x2y﹣4xy+y.

13.因式分解

(1)a3﹣ab2

(2)(x﹣y)2+4xy.

14.先閱讀下面的內(nèi)容,再解決問(wèn)題,

例題:若m2+2mn+2n2﹣6n+9=0,求m和n的值.

解:∵m2+2mn+2n2﹣6n+9=0

∴m2+2mn+n2+n2﹣6n+9=0

∴(m+n)2+(n﹣3)2=0

∴m+n=0,n﹣3=0

∴m=﹣3,n=3

問(wèn)題:

(1)若x2+2y2﹣2xy+4y+4=0,求xy的值.

(2)已知△ABC的三邊長(zhǎng)a,b,c都是正整數(shù),且滿足a2+b2﹣6a﹣6b+18+|3﹣c|=0,請(qǐng)問(wèn)△ABC是怎樣形狀的三角形?

15.如果一個(gè)正整數(shù)能表示為兩個(gè)連續(xù)偶數(shù)的平方差,那么稱這個(gè)正整數(shù)為“和諧數(shù)”.如4=22﹣02,12=42﹣22,20=62﹣42,因此4,12,20這三個(gè)數(shù)都是和諧數(shù).

(1)36和2016這兩個(gè)數(shù)是和諧數(shù)嗎?為什么?

(2)設(shè)兩個(gè)連續(xù)偶數(shù)為2k+2和2k(其中k取非負(fù)整數(shù)),由這兩個(gè)連續(xù)偶數(shù)構(gòu)造的和諧數(shù)是4的倍數(shù)嗎?為什么?

(3)介于1到200之間的所有“和諧數(shù)”之和為 .

16.如圖1,有若干張邊長(zhǎng)為a的小正方形①、長(zhǎng)為b寬為a的長(zhǎng)方形②以及邊長(zhǎng)為b的大正方形③的紙片.

(1)如果現(xiàn)有小正方形①1張,大正方形③2張,長(zhǎng)方形②3張,請(qǐng)你將它們拼成一個(gè)大長(zhǎng)方形 (在圖2虛線框中畫(huà)出圖形),并運(yùn)用面積之間的關(guān)系,將多項(xiàng)式a2+3ab+2b2分解因式.

(2)已知小正方形①與大正方形③的面積之和為169,長(zhǎng)方形②的周長(zhǎng)為34,求長(zhǎng)方形②的面積.

(3)現(xiàn)有三種紙片各8張,從其中取出若干張紙片,每種紙片至少取一張,把取出的這些紙片拼成一個(gè)正方形(按原紙張進(jìn)行無(wú)空隙、無(wú)重疊拼接),求可以拼成多少種邊長(zhǎng)不同的正方形.

17.(1)有若干塊長(zhǎng)方形和正方形硬紙片如圖1所示,用若干塊這樣的硬紙片拼成一個(gè)新的長(zhǎng)方形,如圖2.

①用兩種不同的方法,計(jì)算圖2中長(zhǎng)方形的面積;

②由此,你可以得出的一個(gè)等式為: .

(2)有若干塊長(zhǎng)方形和正方形硬紙片如圖3所示.

①請(qǐng)你用拼圖等方法推出一個(gè)完全平方公式,畫(huà)出你的拼圖;

②請(qǐng)你用拼圖等方法推出2a2+5ab+2b2因式分解的結(jié)果,畫(huà)出你的拼圖.

18.已知a+b=1,ab=﹣1,設(shè)s1=a+b,s2=a2+b2,s3=a3+b3,…,sn=an+bn

(1)計(jì)算s2;

(2)請(qǐng)閱讀下面計(jì)算s3的過(guò)程:

因?yàn)閍+b=1,ab=﹣1,

所以s3=a3+b3=(a+b)(a2+b2)﹣ab(a+b)=1×s2﹣(﹣1)=s2+1=

你讀懂了嗎?請(qǐng)你先填空完成(2)中s3的計(jì)算結(jié)果,再用你學(xué)到的方法計(jì)算s4.

(3)試寫(xiě)出sn﹣2,sn﹣1,sn三者之間的關(guān)系式;

(4)根據(jù)(3)得出的結(jié)論,計(jì)算s6.

19.(1)利用因式分解簡(jiǎn)算:9.82+0.4×9.8+0.04

(2)分解因式:4a(a﹣1)2﹣(1﹣a)

20.閱讀材料:若m2﹣2mn+2n2﹣8n+16=0,求m、n的值.

解:∵m2﹣2mn+2n2﹣8n+16=0,∴(m2﹣2mn+n2)+(n2﹣8n+16)=0

∴(m﹣n)2+(n﹣4)2=0,∴(m﹣n)2=0,(n﹣4)2=0,∴n=4,m=4.

根據(jù)你的觀察,探究下面的問(wèn)題:

(1)已知x2+2xy+2y2+2y+1=0,求x﹣y的值.

(2)已知△ABC的三邊長(zhǎng)a、b、c都是正整數(shù),且滿足a2+b2﹣6a﹣8b+25=0,求△ABC的最大邊c的值.

(3)已知a﹣b=4,ab+c2﹣6c+13=0,則a﹣b+c= .

21.仔細(xì)閱讀下面例題,解答問(wèn)題:

例題:已知二次三項(xiàng)式x2﹣4x+m有一個(gè)因式是(x+3),求另一個(gè)因式以及m的值.

解:設(shè)另一個(gè)因式為(x+n),得x2﹣4x+m=(x+3)(x+n),則x2﹣4x+m=x2+(n+3)x+3n

∴n+3=﹣4

m=3n 解得:n=﹣7,m=﹣21

∴另一個(gè)因式為(x﹣7),m的值為﹣21.

問(wèn)題:

(1)若二次三項(xiàng)式x2﹣5x+6可分解為(x﹣2)(x+a),則a= ;

(2)若二次三項(xiàng)式2x2+bx﹣5可分解為(2x﹣1)(x+5),則b= ;

(3)仿照以上方法解答下面問(wèn)題:已知二次三項(xiàng)式2x2+5x﹣k有一個(gè)因式是(2x﹣3),求另一個(gè)因式以及k的值.

22.分解因式:

(1)2x2﹣x;

(2)16x2﹣1;

(3)6xy2﹣9x2y﹣y3;

(4)4+12(x﹣y)+9(x﹣y)2.

23.已知a,b,c是三角形的三邊,且滿足(a+b+c)2=3(a2+b2+c2),試確定三角形的形狀.

24.分解因式

(1)2x4﹣4x2y2+2y4

(2)2a3﹣4a2b+2ab2.

25.圖①是一個(gè)長(zhǎng)為2m、寬為2n的長(zhǎng)方形,沿圖中虛線用剪刀平均分成四塊小長(zhǎng)方形,然后按圖②的形狀拼成一個(gè)正方形.

(1)圖②中的陰影部分的面積為 ;

(2)觀察圖②請(qǐng)你寫(xiě)出三個(gè)代數(shù)式(m+n)2、(m﹣n)2、mn之間的等量關(guān)系是 .

(3)若x+y=7,xy=10,則(x﹣y)2= .

(4)實(shí)際上有許多代數(shù)恒等式可以用圖形的面積來(lái)表示.

如圖③,它表示了 .

(5)試畫(huà)出一個(gè)幾何圖形,使它的面積能表示(m+n)(m+3n)=m2+4mn+3n2.

26.已知a、b、c滿足a﹣b=8,ab+c2+16=0,求2a+b+c的值.

27.已知:一個(gè)長(zhǎng)方體的長(zhǎng)、寬、高分別為正整數(shù)a、b、c,且滿足a+b+c+ab+bc+ac+abc=2006,

求:這個(gè)長(zhǎng)方體的體積.

28.(x2﹣4x)2﹣2(x2﹣4x)﹣15.

29.閱讀下列因式分解的過(guò)程,再回答所提出的問(wèn)題:

1+x+x(x+1)+x(x+1)2

=(1+x)[1+x+x(x+1)]

=(1+x)2(1+x)

=(1+x)3

(1)上述分解因式的方法是 ,共應(yīng)用了 次.

(2)若分解1+x+x(x+1)+x(x+1)2+…+x(x+1)2004,則需應(yīng)用上述方法 次,結(jié)果是.

(3)分解因式:1+x+x(x+1)+x(x+1)2+…+x(x+1)n(n為正整數(shù)).

30.對(duì)于多項(xiàng)式x3﹣5x2+x+10,如果我們把x=2代入此多項(xiàng)式,發(fā)現(xiàn)多項(xiàng)式x3﹣5x2+x+10=0,這時(shí)可以斷定多項(xiàng)式中有因式(x﹣2)(注:把x=a代入多項(xiàng)式能使多項(xiàng)式的值為0,則多項(xiàng)式含有因式(x﹣a)),于是我們可以把多項(xiàng)式寫(xiě)成:x3﹣5x2+x+10=(x﹣2)(x2+mx+n),

(1)求式子中m、n的值;

(2)以上這種因式分解的方法叫試根法,用試根法分解多項(xiàng)式x3﹣2x2﹣13x﹣10的因式.

參考答案與試題解析

一.填空題(共10小題)

1.(2016秋·望謨縣期末)已知x+y=10,xy=16,則x2y+xy2的值為 160 .

【分析】首先提取公因式xy,進(jìn)而將已知代入求出即可.

【解答】解:∵x+y=10,xy=16,

∴x2y+xy2=xy(x+y)=10×16=160.

故答案為:160.

【點(diǎn)評(píng)】此題主要考查了提取公因式法分解因式,正確找出公因式是解題關(guān)鍵.

2.(2016秋·新賓縣期末)兩位同學(xué)將一個(gè)二次三項(xiàng)式分解因式,一位同學(xué)因看錯(cuò)了一次項(xiàng)系數(shù)而分解成2(x﹣1)(x﹣9);另一位同學(xué)因看錯(cuò)了常數(shù)項(xiàng)分解成2(x﹣2)(x﹣4),請(qǐng)你將原多項(xiàng)式因式分解正確的結(jié)果寫(xiě)出來(lái): 2(x﹣3)2.

【分析】根據(jù)多項(xiàng)式的乘法將2(x﹣1)(x﹣9)展開(kāi)得到二次項(xiàng)、常數(shù)項(xiàng);將2(x﹣2)(x﹣4)展開(kāi)得到二次項(xiàng)、一次項(xiàng).從而得到原多項(xiàng)式,再對(duì)該多項(xiàng)式提取公因式2后利用完全平方公式分解因式.

【解答】解:∵2(x﹣1)(x﹣9)=2x2﹣20x+18;

2(x﹣2)(x﹣4)=2x2﹣12x+16;

∴原多項(xiàng)式為2x2﹣12x+18.

2x2﹣12x+18=2(x2﹣6x+9)=2(x﹣3)2.

【點(diǎn)評(píng)】根據(jù)錯(cuò)誤解法得到原多項(xiàng)式是解答本題的關(guān)鍵.二次三項(xiàng)式分解因式,看錯(cuò)了一次項(xiàng)系數(shù),但二次項(xiàng)、常數(shù)項(xiàng)正確;看錯(cuò)了常數(shù)項(xiàng),但二次項(xiàng)、一次項(xiàng)正確.

3.(2015春·昌邑市期末)若多項(xiàng)式x2+mx+4能用完全平方公式分解因式,則m的值是 ±4 .

【分析】利用完全平方公式(a+b)2=(a﹣b)2+4ab、(a﹣b)2=(a+b)2﹣4ab計(jì)算即可.

【解答】解:∵x2+mx+4=(x±2)2,

即x2+mx+4=x2±4x+4,

∴m=±4.

故答案為:±4.

【點(diǎn)評(píng)】此題主要考查了公式法分解因式,熟記有關(guān)完全平方的幾個(gè)變形公式是解題關(guān)鍵.

4.(2015秋·利川市期末)分解因式:4x2﹣4x﹣3= (2x﹣3)(2x+1) .

【分析】ax2+bx+c(a≠0)型的式子的因式分解,這種方法的關(guān)鍵是把二次項(xiàng)系數(shù)a分解成兩個(gè)因數(shù)a1,a2的積a1·a2,把常數(shù)項(xiàng)c分解成兩個(gè)因數(shù)c1,c2的積c1·c2,并使a1c2+a2c1正好是一次項(xiàng)b,那么可以直接寫(xiě)成結(jié)果:ax2+bx+c=(a1x+c1)(a2x+c2),進(jìn)而得出答案.

【解答】解:4x2﹣4x﹣3=(2x﹣3)(2x+1).

故答案為:(2x﹣3)(2x+1).

【點(diǎn)評(píng)】此題主要考查了十字相乘法分解因式,正確分解各項(xiàng)系數(shù)是解題關(guān)鍵.

5.(2015春·東陽(yáng)市期末)利用因式分解計(jì)算:2022+202×196+982= 90000 .

【分析】通過(guò)觀察,顯然符合完全平方公式.

【解答】解:原式=2022+2x202x98+982

=(202+98)2

=3002

=90000.

【點(diǎn)評(píng)】運(yùn)用公式法可以簡(jiǎn)便計(jì)算一些式子的值.

6.(2015秋·浮梁縣校級(jí)期末)△ABC三邊a,b,c滿足a2+b2+c2=ab+bc+ca,則△ABC的形狀是 等邊三角形 .

【分析】分析題目所給的式子,將等號(hào)兩邊均乘以2,再化簡(jiǎn)得(a﹣b)2+(a﹣c)2+(b﹣c)2=0,得出:a=b=c,即選出答案.

【解答】解:等式a2+b2+c2=ab+bc+ac等號(hào)兩邊均乘以2得:

2a2+2b2+2c2=2ab+2bc+2ac,

即a2﹣2ab+b2+a2﹣2ac+c2+b2﹣2bc+c2=0,

即(a﹣b)2+(a﹣c)2+(b﹣c)2=0,

解得:a=b=c,

所以,△ABC是等邊三角形.

故答案為:等邊三角形.

【點(diǎn)評(píng)】此題考查了因式分解的應(yīng)用;利用等邊三角形的判定,化簡(jiǎn)式子得a=b=c,由三邊相等判定△ABC是等邊三角形.

7.(2015秋·鄂托克旗校級(jí)期末)計(jì)算:12﹣22+32﹣42+52﹣62+…﹣1002+1012= 5151 .

【分析】通過(guò)觀察,原式變?yōu)?+(32﹣22)+(52﹣42)+(1012﹣1002),進(jìn)一步運(yùn)用高斯求和公式即可解決.

【解答】解:12﹣22+32﹣42+52﹣62+…﹣1002+1012

=1+(32﹣22)+(52﹣42)+(1012﹣1002)

=1+(3+2)+(5+4)+(7+6)+…+(101+100)

=(1+101)×101÷2

=5151.

故答案為:5151.

【點(diǎn)評(píng)】此題考查因式分解的實(shí)際運(yùn)用,分組分解,利用平方差公式解決問(wèn)題.

8.(2015秋·樂(lè)至縣期末)定義運(yùn)算a★b=(1﹣a)b,下面給出了關(guān)于這種運(yùn)算的四個(gè)結(jié)論:

①2★(﹣2)=3

②a★b=b★a

③若a+b=0,則(a★a)+(b★b)=2ab

④若a★b=0,則a=1或b=0.

其中正確結(jié)論的序號(hào)是、邰堋(填上你認(rèn)為正確的所有結(jié)論的序號(hào)).

【分析】根據(jù)題中的新定義計(jì)算得到結(jié)果,即可作出判斷.

【解答】解:①2★(﹣2)=(1﹣2)×(﹣2)=2,本選項(xiàng)錯(cuò)誤;

②a★b=(1﹣a)b,b★a=(1﹣b)a,故a★b不一定等于b★a,本選項(xiàng)錯(cuò)誤;

③若a+b=0,則(a★a)+(b★b)=(1﹣a)a+(1﹣b)b=a﹣a2+b﹣b2=﹣a2﹣b2=﹣2a2=2ab,本選項(xiàng)正確;

④若a★b=0,即(1﹣a)b=0,則a=1或b=0,本選項(xiàng)正確,

其中正確的有③④.

故答案為③④.

【點(diǎn)評(píng)】此題考查了整式的混合運(yùn)算,以及有理數(shù)的混合運(yùn)算,弄清題中的新定義是解本題的關(guān)鍵.

9.(2015春·張掖校級(jí)期末)如果1+a+a2+a3=0,代數(shù)式a+a2+a3+a4+a5+a6+a7+a8= 0 .

【分析】4項(xiàng)為一組,分成2組,再進(jìn)一步分解因式求得答案即可.

【解答】解:∵1+a+a2+a3=0,

∴a+a2+a3+a4+a5+a6+a7+a8,

=a(1+a+a2+a3)+a5(1+a+a2+a3),

=0+0,

=0.

故答案是:0.

【點(diǎn)評(píng)】此題考查利用因式分解法求代數(shù)式的值,注意合理分組解決問(wèn)題.

10.(2015春·昆山市期末)若多項(xiàng)式x2﹣6x﹣b可化為(x+a)2﹣1,則b的值是 ﹣8 .

【分析】利用配方法進(jìn)而將原式變形得出即可.

【解答】解:∵x2﹣6x﹣b=(x﹣3)2﹣9﹣b=(x+a)2﹣1,

∴a=﹣3,﹣9﹣b=﹣1,

解得:a=﹣3,b=﹣8.

故答案為:﹣8.

【點(diǎn)評(píng)】此題主要考查了配方法的應(yīng)用,根據(jù)題意正確配方是解題關(guān)鍵.

二.解答題(共20小題)

11.已知n為整數(shù),試說(shuō)明(n+7)2﹣(n﹣3)2的值一定能被20整除.

【分析】用平方差公式展開(kāi)(n+7)2﹣(n﹣3)2,看因式中有沒(méi)有20即可.

【解答】解:(n+7)2﹣(n﹣3)2=(n+7+n﹣3)(n+7﹣n+3)=20(n+2),

∴(n+7)2﹣(n﹣3)2的值一定能被20整除.

【點(diǎn)評(píng)】主要考查利用平方差公式分解因式.公式:a2﹣b2=(a+b)(a﹣b).

12.(2016秋·農(nóng)安縣校級(jí)期末)因式分解:4x2y﹣4xy+y.

【分析】先提取公因式y(tǒng),再對(duì)余下的多項(xiàng)式利用完全平方公式繼續(xù)分解.

【解答】解:4x2y﹣4xy+y

=y(4x2﹣4x+1)

=y(2x﹣1)2.

【點(diǎn)評(píng)】本題考查了用提公因式法和公式法進(jìn)行因式分解,一個(gè)多項(xiàng)式有公因式首先提取公因式,然后再用其他方法進(jìn)行因式分解,同時(shí)因式分解要徹底,直到不能分解為止.

13.(2015秋·成都校級(jí)期末)因式分解

(1)a3﹣ab2

(2)(x﹣y)2+4xy.

【分析】(1)原式提取a,再利用平方差公式分解即可;

(2)原式利用完全平方公式分解即可.

【解答】解:(1)原式=a(a2﹣b2)=a(a+b)(a﹣b);

(2)原式=x2﹣2xy+y2+4xy=x2+2xy+y2=(x+y)2.

【點(diǎn)評(píng)】此題考查了提公因式法與公式法的綜合運(yùn)用,熟練掌握因式分解的方法是解本題的關(guān)鍵.

14.(2015春·甘肅校級(jí)期末)先閱讀下面的內(nèi)容,再解決問(wèn)題,

例題:若m2+2mn+2n2﹣6n+9=0,求m和n的值.

解:∵m2+2mn+2n2﹣6n+9=0

∴m2+2mn+n2+n2﹣6n+9=0

∴(m+n)2+(n﹣3)2=0

∴m+n=0,n﹣3=0

∴m=﹣3,n=3

問(wèn)題:

(1)若x2+2y2﹣2xy+4y+4=0,求xy的值.

(2)已知△ABC的三邊長(zhǎng)a,b,c都是正整數(shù),且滿足a2+b2﹣6a﹣6b+18+|3﹣c|=0,請(qǐng)問(wèn)△ABC是怎樣形狀的三角形?

【分析】(1)首先把x2+2y2﹣2xy+4y+4=0,配方得到(x﹣y)2+(y+2)2=0,再根據(jù)非負(fù)數(shù)的性質(zhì)得到x=y=﹣2,代入求得數(shù)值即可;

(2)先把a(bǔ)2+b2﹣6a﹣6b+18+|3﹣c|=0,配方得到(a﹣3)2+(b﹣3)2+|3﹣c|=0,根據(jù)非負(fù)數(shù)的性質(zhì)得到a=b=c=3,得出三角形的形狀即可.

【解答】解:(1)∵x2+2y2﹣2xy+4y+4=0

∴x2+y2﹣2xy+y2+4y+4=0,

∴(x﹣y)2+(y+2)2=0

∴x=y=﹣2

;

(2)∵a2+b2﹣6a﹣6b+18+|3﹣c|=0,

∴a2﹣6a+9+b2﹣6b+9+|3﹣c|=0,

∴(a﹣3)2+(b﹣3)2+|3﹣c|=0

∴a=b=c=3

∴三角形ABC是等邊三角形.

【點(diǎn)評(píng)】此題考查了配方法的應(yīng)用:通過(guò)配方,把已知條件變形為幾個(gè)非負(fù)數(shù)的和的形式,然后利用非負(fù)數(shù)的性質(zhì)得到幾個(gè)等量關(guān)系,建立方程求得數(shù)值解決問(wèn)題.

15.(2015秋·太和縣期末)如果一個(gè)正整數(shù)能表示為兩個(gè)連續(xù)偶數(shù)的平方差,那么稱這個(gè)正整數(shù)為“和諧數(shù)”.如4=22﹣02,12=42﹣22,20=62﹣42,因此4,12,20這三個(gè)數(shù)都是和諧數(shù).

(1)36和2016這兩個(gè)數(shù)是和諧數(shù)嗎?為什么?

(2)設(shè)兩個(gè)連續(xù)偶數(shù)為2k+2和2k(其中k取非負(fù)整數(shù)),由這兩個(gè)連續(xù)偶數(shù)構(gòu)造的和諧數(shù)是4的倍數(shù)嗎?為什么?

(3)介于1到200之間的所有“和諧數(shù)”之和為 2500 .

【分析】(1)利用36=102﹣82;2016=5052﹣5032說(shuō)明36是“和諧數(shù)”,2016不是“和諧數(shù)”;

(2)設(shè)兩個(gè)連續(xù)偶數(shù)為2n,2n+2(n為自然數(shù)),則“和諧數(shù)”=(2n+2)2﹣(2n)2,利用平方差公式展開(kāi)得到(2n+2+2n)(2n+2﹣2n)=4(2n+1),然后利用整除性可說(shuō)明“和諧數(shù)”一定是4的倍數(shù);

(3)介于1到200之間的所有“和諧數(shù)”中,最小的為:22﹣02=4,最大的為:502﹣482=196,將它們?nèi)苛谐霾浑y求出他們的和.

【解答】解:(1)36是“和諧數(shù)”,2016不是“和諧數(shù)”.理由如下:

36=102﹣82;2016=5052﹣5032;

(2)設(shè)兩個(gè)連續(xù)偶數(shù)為2k+2和2k(n為自然數(shù)),

∵(2k+2)2﹣(2k)2=(2k+2+2k)(2k+2﹣2k)

=(4k+2)×2

=4(2k+1),

∵4(2k+1)能被4整除,

∴“和諧數(shù)”一定是4的倍數(shù);

(3)介于1到200之間的所有“和諧數(shù)”之和,

S=(22﹣02)+(42﹣22)+(62﹣42)+…+(502﹣482)=502=2500.

故答案是:2500.

【點(diǎn)評(píng)】本題考查了因式分解的應(yīng)用:利用因式分解把所求的代數(shù)式進(jìn)行變形,從而達(dá)到使計(jì)算簡(jiǎn)化.

16.(2015春·興化市校級(jí)期末)如圖1,有若干張邊長(zhǎng)為a的小正方形①、長(zhǎng)為b寬為a的長(zhǎng)方形②以及邊長(zhǎng)為b的大正方形③的紙片.

(1)如果現(xiàn)有小正方形①1張,大正方形③2張,長(zhǎng)方形②3張,請(qǐng)你將它們拼成一個(gè)大長(zhǎng)方形 (在圖2虛線框中畫(huà)出圖形),并運(yùn)用面積之間的關(guān)系,將多項(xiàng)式a2+3ab+2b2分解因式.

(2)已知小正方形①與大正方形③的面積之和為169,長(zhǎng)方形②的周長(zhǎng)為34,求長(zhǎng)方形②的面積.

(3)現(xiàn)有三種紙片各8張,從其中取出若干張紙片,每種紙片至少取一張,把取出的這些紙片拼成一個(gè)正方形(按原紙張進(jìn)行無(wú)空隙、無(wú)重疊拼接),求可以拼成多少種邊長(zhǎng)不同的正方形.

【分析】(1)根據(jù)小正方形①1張,大正方形③2張,長(zhǎng)方形②3張,直接畫(huà)出圖形,利用圖形分解因式即可;

(2)由長(zhǎng)方形②的周長(zhǎng)為34,得出a+b=17,由題意可知:小正方形①與大正方形③的面積之和為a2+b2=169,將a+b=17兩邊同時(shí)平方,可求得ab的值,從而可求得長(zhǎng)方形②的面積;

(3)設(shè)正方形的邊長(zhǎng)為(na+mb),其中(n、m為正整數(shù))由完全平方公式可知:(na+mb)2=n2a2+2nmab+m2b2.因?yàn)楝F(xiàn)有三種紙片各8張,

n2≤8,m2≤8,2mn≤8(n、m為正整數(shù))從而可知n≤2,m≤2,從而可得出答案.

【解答】解:(1)如圖:

拼成邊為(a+2b)和(a+b)的長(zhǎng)方形

∴a2+3ab+2b2=(a+2b)(a+b);

(2)∵長(zhǎng)方形②的周長(zhǎng)為34,

∴a+b=17.

∵小正方形①與大正方形③的面積之和為169,

∴a2+b2=169.

將a+b=17兩邊同時(shí)平方得:(a+b)2=172,整理得:a2+2ab+b2=289,

∴2ab=289﹣169,

∴ab=60.

∴長(zhǎng)方形②的面積為60.

(3)設(shè)正方形的邊長(zhǎng)為(na+mb),其中(n、m為正整數(shù))

∴正方形的面積=(na+mb)2=n2a2+2nmab+m2b2.

∵現(xiàn)有三種紙片各8張,

∴n2≤8,m2≤8,2mn≤8(n、m為正整數(shù))

∴n≤2,m≤2.

∴共有以下四種情況;

①n=1,m=1,正方形的邊長(zhǎng)為a+b;

②n=1,m=2,正方形的邊長(zhǎng)為a+2b;

③n=2,m=1,正方形的邊長(zhǎng)為2a+b;

④n=2,m=2,正方形的邊長(zhǎng)為2a+2b.

【點(diǎn)評(píng)】此題考查因式分解的運(yùn)用,要注意結(jié)合圖形解決問(wèn)題,解題的關(guān)鍵是靈活運(yùn)用完全平方公式.

17.(2014秋·萊城區(qū)校級(jí)期中)(1)有若干塊長(zhǎng)方形和正方形硬紙片如圖1所示,用若干塊這樣的硬紙片拼成一個(gè)新的長(zhǎng)方形,如圖2.

①用兩種不同的方法,計(jì)算圖2中長(zhǎng)方形的面積;

②由此,你可以得出的一個(gè)等式為: a2+2a+1 = (a+1)2.

(2)有若干塊長(zhǎng)方形和正方形硬紙片如圖3所示.

①請(qǐng)你用拼圖等方法推出一個(gè)完全平方公式,畫(huà)出你的拼圖;

②請(qǐng)你用拼圖等方法推出2a2+5ab+2b2因式分解的結(jié)果,畫(huà)出你的拼圖.

【分析】(1)要能根據(jù)所給拼圖運(yùn)用不同的計(jì)算面積的方法,來(lái)推導(dǎo)公式;

(2)要能根據(jù)等式畫(huà)出合適的拼圖.

【解答】解:(1)①長(zhǎng)方形的面積=a2+2a+1;長(zhǎng)方形的面積=(a+1)2;

②a2+2a+1=(a+1)2;

(2)①如圖,可推導(dǎo)出(a+b)2=a2+2ab+b2;

②2a2+5ab+2b2=(2a+b)(a+2b).

【點(diǎn)評(píng)】本題考查運(yùn)用正方形或長(zhǎng)方形的面積計(jì)算推導(dǎo)相關(guān)的一些等式;運(yùn)用圖形的面積計(jì)算的不同方法得到多項(xiàng)式的因式分解.

18.(2013秋·海淀區(qū)校級(jí)期末)已知a+b=1,ab=﹣1,設(shè)s1=a+b,s2=a2+b2,s3=a3+b3,…,sn=an+bn

(1)計(jì)算s2;

(2)請(qǐng)閱讀下面計(jì)算s3的過(guò)程:

因?yàn)閍+b=1,ab=﹣1,

所以s3=a3+b3=(a+b)(a2+b2)﹣ab(a+b)=1×s2﹣(﹣1)=s2+1= 4

你讀懂了嗎?請(qǐng)你先填空完成(2)中s3的計(jì)算結(jié)果,再用你學(xué)到的方法計(jì)算s4.

(3)試寫(xiě)出sn﹣2,sn﹣1,sn三者之間的關(guān)系式;

(4)根據(jù)(3)得出的結(jié)論,計(jì)算s6.

【分析】(1)(2)利用完全平方公式進(jìn)行化簡(jiǎn),然后代入a+b,ab的值,即可推出結(jié)論;

(3)根據(jù)(1)所推出的結(jié)論,即可推出Sn﹣2+Sn﹣1=Sn;

(4)根據(jù)(3)的結(jié)論,即可推出a6+b6=S6=S4+S5=2S4+S3.

【解答】解:(1)S2=a2+b2=(a+b)2﹣2ab=3;

(2)∵(a2+b2)(a+b)=a3+ab2+a2b+b3=a3+b3+ab(a+b),

∴3×1=a3+b3﹣1,

∴a3+b3=4,即S3=4;

∵S4=(a2+b2)2﹣2(ab)2=7,

∴S4=7;

(3)∵S2=3,S3=4,S4=7,

∴S2+S3=S4,

∴Sn﹣2+Sn﹣1=Sn;

(3)∵Sn﹣2+Sn﹣1=Sn,S2=3,S3=4,S4=7,

∴S5=4+7=11,

∴S6=7+11=18.

【點(diǎn)評(píng)】本題主要考查整式的混合運(yùn)算、完全平方公式的運(yùn)用,關(guān)鍵在于根據(jù)題意推出S2=3,S3=4,S4=7,分析歸納出規(guī)律:Sn﹣2+Sn﹣1=Sn.

19.(2013春·重慶校級(jí)期末)(1)利用因式分解簡(jiǎn)算:9.82+0.4×9.8+0.04

(2)分解因式:4a(a﹣1)2﹣(1﹣a)

【分析】(1)利用完全平方公式因式分解計(jì)算即可;

(2)先利用提取公因式法,再利用完全平方公式因式分解即可.

【解答】解:(1)原式=9.82+2×0.2×9.8+0.22

=(9.8+0.2)2

=100;

(2)4a(a﹣1)2﹣(1﹣a)

=(a﹣1)(4a2﹣4a+1)

=(a﹣1)(2a﹣1)2.

【點(diǎn)評(píng)】此題考查因式分解的實(shí)際運(yùn)用,掌握平方差公式和完全平方公式是解決問(wèn)題的關(guān)鍵.

20.(2013春·惠山區(qū)校級(jí)期末)閱讀材料:若m2﹣2mn+2n2﹣8n+16=0,求m、n的值.

解:∵m2﹣2mn+2n2﹣8n+16=0,∴(m2﹣2mn+n2)+(n2﹣8n+16)=0

∴(m﹣n)2+(n﹣4)2=0,∴(m﹣n)2=0,(n﹣4)2=0,∴n=4,m=4.

根據(jù)你的觀察,探究下面的問(wèn)題:

(1)已知x2+2xy+2y2+2y+1=0,求x﹣y的值.

(2)已知△ABC的三邊長(zhǎng)a、b、c都是正整數(shù),且滿足a2+b2﹣6a﹣8b+25=0,求△ABC的最大邊c的值.

(3)已知a﹣b=4,ab+c2﹣6c+13=0,則a﹣b+c= 7 .

【分析】(1)將多項(xiàng)式第三項(xiàng)分項(xiàng)后,結(jié)合并利用完全平方公式化簡(jiǎn),根據(jù)兩個(gè)非負(fù)數(shù)之和為0,兩非負(fù)數(shù)分別為0求出x與y的值,即可求出x﹣y的值;

(2)將已知等式25分為9+16,重新結(jié)合后,利用完全平方公式化簡(jiǎn),根據(jù)兩個(gè)非負(fù)數(shù)之和為0,兩非負(fù)數(shù)分別為0求出a與b的值,根據(jù)邊長(zhǎng)為正整數(shù)且三角形三邊關(guān)系即可求出c的長(zhǎng);

(3)由a﹣b=4,得到a=b+4,代入已知的等式中重新結(jié)合后,利用完全平方公式化簡(jiǎn),根據(jù)兩個(gè)非負(fù)數(shù)之和為0,兩非負(fù)數(shù)分別為0求出b與c的值,進(jìn)而求出a的值,即可求出a﹣b+c的值.

【解答】解:(1)∵x2+2xy+2y2+2y+1=0

∴(x2+2xy+y2)+(y2+2y+1)=0

∴(x+y)2+(y+1)2=0

∴x+y=0 y+1=0

解得x=1,y=﹣1

∴x﹣y=2;

(2)∵a2+b2﹣6a﹣8b+25=0

∴(a2﹣6a+9)+(b2﹣8b+16)=0

∴(a﹣3)2+(b﹣4)2=0

∴a﹣3=0,b﹣4=0

解得a=3,b=4

∵三角形兩邊之和>第三邊

∴c

∴c<7,又c是正整數(shù),

∴c最大為6;

(3)∵a﹣b=4,即a=b+4,代入得:(b+4)b+c2﹣6c+13=0,

整理得:(b2+4b+4)+(c2﹣6c+9)=(b+2)2+(c﹣3)2=0,

∴b+2=0,且c﹣3=0,即b=﹣2,c=3,a=2,

則a﹣b+c=2﹣(﹣2)+3=7.

故答案為:7.

【點(diǎn)評(píng)】此題考查了因式分解的應(yīng)用,以及非負(fù)數(shù)的性質(zhì),熟練掌握完全平方公式是解本題的關(guān)鍵.

21.(2012秋·溫嶺市校級(jí)期末)仔細(xì)閱讀下面例題,解答問(wèn)題:

例題:已知二次三項(xiàng)式x2﹣4x+m有一個(gè)因式是(x+3),求另一個(gè)因式以及m的值.

解:設(shè)另一個(gè)因式為(x+n),得x2﹣4x+m=(x+3)(x+n),則x2﹣4x+m=x2+(n+3)x+3n

∴n+3=﹣4

m=3n 解得:n=﹣7,m=﹣21

∴另一個(gè)因式為(x﹣7),m的值為﹣21.

問(wèn)題:

(1)若二次三項(xiàng)式x2﹣5x+6可分解為(x﹣2)(x+a),則a= ﹣3 ;

(2)若二次三項(xiàng)式2x2+bx﹣5可分解為(2x﹣1)(x+5),則b= 9 ;

(3)仿照以上方法解答下面問(wèn)題:已知二次三項(xiàng)式2x2+5x﹣k有一個(gè)因式是(2x﹣3),求另一個(gè)因式以及k的值.

【分析】(1)將(x﹣2)(x+a)展開(kāi),根據(jù)所給出的二次三項(xiàng)式即可求出a的值;

(2)(2x﹣1)(x+5)展開(kāi),可得出一次項(xiàng)的系數(shù),繼而即可求出b的值;

(3)設(shè)另一個(gè)因式為(x+n),得2x2+5x﹣k=(2x﹣3)(x+n)=2x2+(2n﹣3)x﹣3n,可知2n﹣3=5,k=3n,繼而求出n和k的值及另一個(gè)因式.

【解答】解:(1)∵(x﹣2)(x+a)=x2+(a﹣2)x﹣2a=x2﹣5x+6,

∴a﹣2=﹣5,

解得:a=﹣3;

(2)∵(2x﹣1)(x+5)=2x2+9x﹣5=2x2+bx﹣5,

∴b=9;

(3)設(shè)另一個(gè)因式為(x+n),得2x2+5x﹣k=(2x﹣3)(x+n)=2x2+(2n﹣3)x﹣3n,

則2n﹣3=5,k=3n,

解得:n=4,k=12,

故另一個(gè)因式為(x+4),k的值為12.

故答案為:(1)﹣3;(2分)(2)9;(2分)(3)另一個(gè)因式是x+4,k=12(6分).

【點(diǎn)評(píng)】本題考查因式分解的意義,解題關(guān)鍵是對(duì)題中所給解題思路的理解,同時(shí)要掌握因式分解與整式乘法是相反方向的變形,即互逆運(yùn)算,二者是一個(gè)式子的不同表現(xiàn)形式.

22.(2012春·郯城縣期末)分解因式:

(1)2x2﹣x;

(2)16x2﹣1;

(3)6xy2﹣9x2y﹣y3;

(4)4+12(x﹣y)+9(x﹣y)2.

【分析】(1)直接提取公因式x即可;

(2)利用平方差公式進(jìn)行因式分解;

(3)先提取公因式﹣y,再對(duì)余下的多項(xiàng)式利用完全平方公式繼續(xù)分解;

(4)把(x﹣y)看作整體,利用完全平方公式分解因式即可.

【解答】解:(1)2x2﹣x=x(2x﹣1);

(2)16x2﹣1=(4x+1)(4x﹣1);

(3)6xy2﹣9x2y﹣y3,

=﹣y(9x2﹣6xy+y2),

=﹣y(3x﹣y)2;

(4)4+12(x﹣y)+9(x﹣y)2,

=[2+3(x﹣y)]2,

=(3x﹣3y+2)2.

【點(diǎn)評(píng)】本題考查了提公因式法與公式法分解因式,是因式分解的常用方法,難點(diǎn)在(3),提取公因式﹣y后,需要繼續(xù)利用完全平方公式進(jìn)行二次因式分解.

23.(2012春·碑林區(qū)校級(jí)期末)已知a,b,c是三角形的三邊,且滿足(a+b+c)2=3(a2+b2+c2),試確定三角形的形狀.

【分析】將已知等式利用配方法變形,利用非負(fù)數(shù)的性質(zhì)解題.

【解答】解:∵(a+b+c)2=3(a2+b2+c2),

∴a2+b2+c2+2ab+2bc+2ac,=3a2+3b2+3c2,

a2+b2﹣2ab+b2+c2﹣2bc+a2+c2﹣2ac=0,

即(a﹣b)2+(b﹣c)2+(c﹣a)2=0,

∴a﹣b=0,b﹣c=0,c﹣a=0,

∴a=b=c,

故△ABC為等邊三角形.

【點(diǎn)評(píng)】本題考查了配方法的運(yùn)用,非負(fù)數(shù)的性質(zhì),等邊三角形的判斷.關(guān)鍵是將已知等式利用配方法變形,利用非負(fù)數(shù)的性質(zhì)解題.

24.(2011秋·北辰區(qū)校級(jí)期末)分解因式

(1)2x4﹣4x2y2+2y4

(2)2a3﹣4a2b+2ab2.

【分析】(1)原式提取公因式后,利用平方差公式分解即可;

(2)原式提取公因式,利用完全平方公式分解即可.

【解答】解:(1)2x4﹣4x2y2+2y4

=2(x4﹣2x2y2+y4)

=2(x2﹣y2)2

=2(x+y)2(x﹣y)2;

(2)2a3﹣4a2b+2ab2

=2a(a2﹣2ab+b2)

=2a(a﹣b)2.

【點(diǎn)評(píng)】此題考查了提公因式法與公式法的綜合運(yùn)用,提取公因式后利用公式進(jìn)行二次分解,注意分解要徹底.

25.(2011秋·蘇州期末)圖①是一個(gè)長(zhǎng)為2m、寬為2n的長(zhǎng)方形,沿圖中虛線用剪刀平均分成四塊小長(zhǎng)方形,然后按圖②的形狀拼成一個(gè)正方形.

(1)圖②中的陰影部分的面積為 (m﹣n)2;

(2)觀察圖②請(qǐng)你寫(xiě)出三個(gè)代數(shù)式(m+n)2、(m﹣n)2、mn之間的等量關(guān)系是 (m+n)2﹣(m﹣n)2=4mn .

(3)若x+y=7,xy=10,則(x﹣y)2= 9 .

(4)實(shí)際上有許多代數(shù)恒等式可以用圖形的面積來(lái)表示.

如圖③,它表示了 (m+n)(2m+n)=2m2+3mn+n2.

(5)試畫(huà)出一個(gè)幾何圖形,使它的面積能表示(m+n)(m+3n)=m2+4mn+3n2.

【分析】(1)可直接用正方形的面積公式得到.

(2)掌握完全平方公式,并掌握和與差的區(qū)別.

(3)此題可參照第(2)題.

(4)可利用各部分面積和=長(zhǎng)方形面積列出恒等式.

(5)可參照第(4)題畫(huà)圖.

【解答】解:(1)陰影部分的邊長(zhǎng)為(m﹣n),陰影部分的面積為(m﹣n)2;

(2)(m+n)2﹣(m﹣n)2=4mn;

(3)(x﹣y)2=(x+y)2﹣4xy=72﹣40=9;

(4)(m+n)(2m+n)=2m2+3mn+n2;

(5)答案不唯一:

例如:

.

【點(diǎn)評(píng)】本題考查了因式分解的應(yīng)用,解題關(guān)鍵是認(rèn)真觀察題中給出的圖示,用不同的形式去表示面積,熟練掌握完全平方公式,并能進(jìn)行變形.

26.(2009秋·海淀區(qū)期末)已知a、b、c滿足a﹣b=8,ab+c2+16=0,求2a+b+c的值.

【分析】本題乍看下無(wú)法代數(shù)求值,也無(wú)法進(jìn)行因式分解;但是將已知的兩個(gè)式子進(jìn)行適當(dāng)變形后,即可找到本題的突破口.由a﹣b=8可得a=b+8;將其代入ab+c2+16=0得:b2+8b+c2+16=0;此時(shí)可發(fā)現(xiàn)b2+8b+16正好符合完全平方公式,因此可用非負(fù)數(shù)的性質(zhì)求出b、c的值,進(jìn)而可求得a的值;然后代值運(yùn)算即可.

【解答】解:因?yàn)閍﹣b=8,

所以a=b+8.(1分)

又ab+c2+16=0,

所以(b+8)b+c2+16=0.(2分)

即(b+4)2+c2=0.

又(b+4)2≥0,c2≥0,

則b=﹣4,c=0.(4分)

所以a=4,(5分)

所以2a+b+c=4.(6分)

【點(diǎn)評(píng)】本題既考查了對(duì)因式分解方法的掌握,又考查了非負(fù)數(shù)的性質(zhì)以及代數(shù)式求值的方法.

27.(2010春·北京期末)已知:一個(gè)長(zhǎng)方體的長(zhǎng)、寬、高分別為正整數(shù)a、b、c,且滿足a+b+c+ab+bc+ac+abc=2006,

求:這個(gè)長(zhǎng)方體的體積.

【分析】我們可先將a+b+c+ab+bc+ac+abc分解因式可變?yōu)?a+1)(b+1)(c+1)﹣1,就得(1+b)(c+1)(a+1)=2007,由于a、b、c均為正整數(shù),所以(a+1)、(b+1)、(c+1)也為正整數(shù),而2007只可分解為3×3×223,可得(a+1)、(b+1)、(c+1)的值分別為3、3、223,所以a、b、c值為2、2、222.就可求出長(zhǎng)方體體積abc了.

【解答】解:原式可化為:a+ab+c+ac+ab+abc+b+1﹣1=2006,

a(1+b)+c(1+b)+ac(1+b)+(1+b)﹣1=2006,

(1+b)(a+c+ac)+(1+b)=2007,

(1+b)(c+1+a+ac)=2007,

(1+b)(c+1)(a+1)=2007,

2007只能分解為3×3×223

∴(a+1)、(b+1)、(c+1)也只能分別為3、3、223

∴a、b、c也只能分別為2、2、222

∴長(zhǎng)方體的體積abc=888.

【點(diǎn)評(píng)】本題考查了三次的分解因式,做題當(dāng)中用加減項(xiàng)的方法,使式子滿足分解因式.

28.(2007秋·普陀區(qū)校級(jí)期末)(x2﹣4x)2﹣2(x2﹣4x)﹣15.

【分析】把(x2﹣4x)看作一個(gè)整體,先把﹣15寫(xiě)成3×(﹣5),利用十字相乘法分解因式,再把3寫(xiě)成(﹣1)×(﹣3),﹣5寫(xiě)成1×(﹣5),分別利用十字相乘法分解因式即可.

【解答】解:(x2﹣4x)2﹣2(x2﹣4x)﹣15,

=(x2﹣4x+3)(x2﹣4x﹣5),

=(x﹣1)(x﹣3)(x+1)(x﹣5).

【點(diǎn)評(píng)】本題考查了十字相乘法分解因式,運(yùn)用十字相乘法分解因式時(shí),要注意觀察,嘗試,并體會(huì)它實(shí)質(zhì)是二項(xiàng)式乘法的逆過(guò)程,本題需要進(jìn)行多次因式分解,分解因式一定要徹底.

29.(2007春·鎮(zhèn)海區(qū)期末)閱讀下列因式分解的過(guò)程,再回答所提出的問(wèn)題:

1+x+x(x+1)+x(x+1)2

=(1+x)[1+x+x(x+1)]

=(1+x)2(1+x)

=(1+x)3

(1)上述分解因式的方法是 提公因式法 ,共應(yīng)用了 2 次.

(2)若分解1+x+x(x+1)+x(x+1)2+…+x(x+1)2004,則需應(yīng)用上述方法 2004 次,結(jié)果是 (1+x)2005.

(3)分解因式:1+x+x(x+1)+x(x+1)2+…+x(x+1)n(n為正整數(shù)).

【分析】此題由特殊推廣到一般,要善于觀察思考,注意結(jié)果和指數(shù)之間的關(guān)系.

【解答】解:(1)上述分解因式的方法是提公因式法,共應(yīng)用了2次.

(2)需應(yīng)用上述方法2004次,結(jié)果是(1+x)2005.

(3)解:原式=(1+x)[1+x+x(x+1)]+x(x+1)3+…+x(x+1)n,

=(1+x)2(1+x)+x(x+1)3+…+x(x+1)n,

=(1+x)3+x(x+1)3+…+x(x+1)n,

=(x+1)n+x(x+1)n,

=(x+1)n+1.

【點(diǎn)評(píng)】本題考查了提公因式法分解因式的推廣,要認(rèn)真觀察已知所給的過(guò)程,弄清每一步的理由,就可進(jìn)一步推廣.

30.(2007春·射洪縣校級(jí)期末)對(duì)于多項(xiàng)式x3﹣5x2+x+10,如果我們把x=2代入此多項(xiàng)式,發(fā)現(xiàn)多項(xiàng)式x3﹣5x2+x+10=0,這時(shí)可以斷定多項(xiàng)式中有因式(x﹣2)(注:把x=a代入多項(xiàng)式能使多項(xiàng)式的值為0,則多項(xiàng)式含有因式(x﹣a)),于是我們可以把多項(xiàng)式寫(xiě)成:x3﹣5x2+x+10=(x﹣2)(x2+mx+n),

(1)求式子中m、n的值;

(2)以上這種因式分解的方法叫試根法,用試根法分解多項(xiàng)式x3﹣2x2﹣13x﹣10的因式.

【分析】(1)根據(jù)(x﹣2)(x2+mx+n)=x3+(m﹣2)x2+(n﹣2m)x﹣2n,得出有關(guān)m,n的方程組求出即可;

(2)由把x=﹣1代入x3﹣2x2﹣13x﹣10,得其值為0,則多項(xiàng)式可分解為(x+1)(x2+ax+b)的形式,進(jìn)而將多項(xiàng)式分解得出答案.

【解答】解:(1)方法一:因(x﹣2)(x2+mx+n)=x3+(m﹣2)x2+(n﹣2m)x﹣2n,

=x3﹣5x2+x+10,(2分)

所以

解得:m=﹣3,n=﹣5(5分),

方法二:在等式x3﹣5x2+x+10=(x﹣2)(x2+mx+n)中,

分別令x=0,x=1,

即可求出:m=﹣3,n=﹣5(注:不同方法可根據(jù)上面標(biāo)準(zhǔn)酌情給分)

(2)把x=﹣1代入x3﹣2x2﹣13x﹣10,得其值為0,

則多項(xiàng)式可分解為(x+1)(x2+ax+b)的形式,(7分)

用上述方法可求得:a=﹣3,b=﹣10,(8分)

所以x3﹣2x2﹣13x﹣10=(x+1)(x2﹣3x﹣10),(9分)

=(x+1)(x+2)(x﹣5).(10分)

   歡迎使用手機(jī)、平板等移動(dòng)設(shè)備訪問(wèn)中考網(wǎng),2023中考一路陪伴同行!>>點(diǎn)擊查看

  • 歡迎掃描二維碼
    關(guān)注中考網(wǎng)微信
    ID:zhongkao_com

  • 歡迎掃描二維碼
    關(guān)注高考網(wǎng)微信
    ID:www_gaokao_com

  • 歡迎微信掃碼
    關(guān)注初三學(xué)習(xí)社
    中考網(wǎng)官方服務(wù)號(hào)

熱點(diǎn)專題

  • 2024年全國(guó)各省市中考作文題目匯總
  • 2024中考真題答案專題
  • 2024中考查分時(shí)間專題

[2024中考]2024中考分?jǐn)?shù)線專題

[2024中考]2024中考逐夢(mèng)前行 未來(lái)可期!

中考報(bào)考

中考報(bào)名時(shí)間

中考查分時(shí)間

中考志愿填報(bào)

各省分?jǐn)?shù)線

中考體育考試

中考中招考試

中考備考

中考答題技巧

中考考前心理

中考考前飲食

中考家長(zhǎng)必讀

中考提分策略

重點(diǎn)高中

北京重點(diǎn)中學(xué)

上海重點(diǎn)中學(xué)

廣州重點(diǎn)中學(xué)

深圳重點(diǎn)中學(xué)

天津重點(diǎn)中學(xué)

成都重點(diǎn)中學(xué)

試題資料

中考?jí)狠S題

中考模擬題

各科練習(xí)題

單元測(cè)試題

初中期中試題

初中期末試題

中考大事記

北京中考大事記

天津中考大事記

重慶中考大事記

西安中考大事記

沈陽(yáng)中考大事記

濟(jì)南中考大事記

知識(shí)點(diǎn)

初中數(shù)學(xué)知識(shí)點(diǎn)

初中物理知識(shí)點(diǎn)

初中化學(xué)知識(shí)點(diǎn)

初中英語(yǔ)知識(shí)點(diǎn)

初中語(yǔ)文知識(shí)點(diǎn)

中考滿分作文

初中資源

初中語(yǔ)文

初中數(shù)學(xué)

初中英語(yǔ)

初中物理

初中化學(xué)

中學(xué)百科