來源:網絡資源 2022-05-02 17:04:27
角平分線成比例定理是數學中的一種定理,該定理指出三角形內角平分線所對邊所得的兩條線段和這個角的兩邊對應成比例。三角形的三條角平分線相交于一點,并且這一點到三條邊的距離相等。
證明
如圖,已知:在△ABC中,AD是∠BAC的角平分線
求證:AB/AC=BD/CD
證明:作CE∥AD交BA延長線于E。
∵CE∥AD
∴AB/AE=BD/CD(平行線分線段成比例)
∵CE∥AD
∴∠BAD=∠E,∠CAD=∠ACE
∵AD平分∠BAC
∴∠BAD=∠CAD
∴ ∠ACE=∠E
∴ AE=AC
又∵AB/AE=BD/CD
∴AB/AC=BD/CD
相關推薦:
關注中考網微信公眾號
每日推送中考知識點,應試技巧
助你迎接2022年中考!
歡迎使用手機、平板等移動設備訪問中考網,2023中考一路陪伴同行!>>點擊查看