來源:本站原創(chuàng) 2022-01-25 20:44:38
1.運用公式法
我們知道整式乘法與因式分解互為逆變形。如果把乘法公式反過來就是把多項式分解因式。于是有:
a^2-b^2=(a+b)(a-b)
a^2+2ab+b^2=(a+b)^2
a^2-2ab+b^2=(a-b)^2
如果把乘法公式反過來,就可以用來把某些多項式分解因式。這種分解因式的方法叫做運用公式法。
2.平方差公式
(1)式子:a^2-b^2=(a+b)(a-b)
(2)語言:兩個數(shù)的平方差,等于這兩個數(shù)的和與這兩個數(shù)的差的積。這個公式就是平方差公式。
3.因式分解
(1)因式分解時,各項如果有公因式應(yīng)先提公因式,再進一步分解。
(2)因式分解,必須進行到每一個多項式因式不能再分解為止。
4.含有字母系數(shù)的一元一次方程
例:一數(shù)的a倍(a≠0)等于b,求這個數(shù)。用x表示這個數(shù),根據(jù)題意,可得方程ax=b(a≠0)
在這個方程中,x是未知數(shù),a和b是用字母表示的已知數(shù)。
對x來說,字母a是x的系數(shù),b是常數(shù)項。這個方程就是一個含有字母系數(shù)的一元一次方程。
含有字母系數(shù)的方程的解法與以前學(xué)過的只含有數(shù)字系數(shù)的方程的解法相同,但必須特別注意:用含有字母的式子去乘或除方程的兩邊,這個式子的值不能等于零。
因式分解的一般步驟:
(1)如果多項式的各項有公因式,那么先提取公因式。
(2)在各項提出公因式以后或各項沒有公因式的情況下,觀察多項式的項數(shù)。
2項式可以嘗試運用公式法分解因式;3項式可以嘗試運用公式法十字相乘法分解因式;4項式及4項式以上的可以嘗試分組分解法分解因式
(3)分解因式必須分解到每一個因式都不能再分解為止。
初中數(shù)學(xué)因式分解速記口訣:
一提二套三分組,叉乘求根也上數(shù)。
五種方法都不行,拆項添項去重組。
對癥下藥穩(wěn)又準,連乘結(jié)果是基礎(chǔ)。
歡迎使用手機、平板等移動設(shè)備訪問中考網(wǎng),2023中考一路陪伴同行!>>點擊查看