來源:網(wǎng)絡(luò)資源 作者:中考網(wǎng)編輯 2021-05-22 20:12:56
中考網(wǎng)整理了關(guān)于2021年中考數(shù)學(xué)知識點之:二次函數(shù)解題方法(1),希望對同學(xué)們有所幫助,僅供參考。
二次函數(shù)解題方法:
1.求證“兩線段相等”的問題:
2.“平行于y軸的動線段長度的最大值”的問題:
由于平行于y軸的線段上各個點的橫坐標(biāo)相等(常設(shè)為t),借助于兩個端點所在的函數(shù)圖象解析式,把兩個端點的縱坐標(biāo)分別用含有字母t的代數(shù)式表示出來,再由兩個端點的高低情況,運用平行于y軸的線段長度計算公式,把動線段的長度就表示成為一個自變量為t,且開口向下的二次函數(shù)解析式,利用二次函數(shù)的性質(zhì),即可求得動線段長度的最大值及端點坐標(biāo)。
3.求一個已知點關(guān)于一條已知直線的對稱點的坐標(biāo)問題:
先用點斜式(或稱K點法)求出過已知點,且與已知直線垂直的直線解析式,再求出兩直線的交點坐標(biāo),最后用中點坐標(biāo)公式即可。
4.“拋物線上是否存在一點,使之到定直線的距離最大”的問題:
(方法1)先求出定直線的斜率,由此可設(shè)出與定直線平行且與拋物線相切的直線的解析式(注意該直線與定直線的斜率相等,因為平行直線斜率(k)相等),再由該直線與拋物線的解析式組成方程組,用代入法把字母y消掉,得到一個關(guān)于x的的一元二次方程,由題有△=-4ac=0(因為該直線與拋物線相切,只有一個交點,所以-4ac=0)從而就可求出該切線的解析式,再把該切線解析式與拋物線的解析式組成方程組,求出x、y的值,即為切點坐標(biāo),然后再利用點到直線的距離公式,計算該切點到定直線的距離,即為最大距離。
(方法2)該問題等價于相應(yīng)動三角形的面積最大問題,從而可先求出該三角形取得最大面積時,動點的坐標(biāo),再用點到直線的距離公式,求出其最大距離。
(方法3)先把拋物線的方程對自變量求導(dǎo),運用導(dǎo)數(shù)的幾何意義,當(dāng)該導(dǎo)數(shù)等于定直線的斜率時,求出的點的坐標(biāo)即為符合題意的點,其最大距離運用點到直線的距離公式可以輕松求出。
相關(guān)推薦:
2021年全國各省市中考報名時間匯總
2021年全國各地中考體育考試方案匯總
2021年全國各省市中考時間匯總
關(guān)注中考網(wǎng)微信公眾號
每日推送中考知識點,應(yīng)試技巧
助你迎接2021年中考!
歡迎使用手機、平板等移動設(shè)備訪問中考網(wǎng),2024中考一路陪伴同行!>>點擊查看