來源:網(wǎng)絡(luò)資源 作者:中考網(wǎng)整理 2020-04-22 17:28:06
在解題時(shí),如果能恰當(dāng)處理它們之間的相互轉(zhuǎn)化,往往可以化難為易,化繁為簡(jiǎn)。
如:代換轉(zhuǎn)化、已知與未知的轉(zhuǎn)化、特殊與一般的轉(zhuǎn)化、具體與抽象的轉(zhuǎn)化、部分與整體的轉(zhuǎn)化、動(dòng)與靜的轉(zhuǎn)化等等。
3、分類討論的思想:
在數(shù)學(xué)中,我們常常需要根據(jù)研究對(duì)象性質(zhì)的差異,分各種不同情況予以考查;這種分類思考的方法,是一種重要的數(shù)學(xué)思想方法,同時(shí)也是一種重要的解題策略。
4、待定系數(shù)法:
當(dāng)我們所研究的數(shù)學(xué)式子具有某種特定形式時(shí),要確定它,只要求出式子中待確定的字母得值就可以了。為此,把已知條件代入這個(gè)待定形式的式子中,往往會(huì)得到含待定字母的方程或方程組,然后解這個(gè)方程或方程組就使問題得到解決。
5、配方法:
就是把一個(gè)代數(shù)式設(shè)法構(gòu)造成平方式,然后再進(jìn)行所需要的變化。配方法是初中代數(shù)中重要的變形技巧,配方法在分解因式、解方程、討論二次函數(shù)等問題,都有重要的作用。
6、換元法:
在解題過程中,把某個(gè)或某些字母的式子作為一個(gè)整體,用一個(gè)新的字母表示,以便進(jìn)一步解決問題的一種方法。換元法可以把一個(gè)較為復(fù)雜的式子化簡(jiǎn),把問題歸結(jié)為比原來更為基本的問題,從而達(dá)到化繁為簡(jiǎn),化難為易的目的。
7、分析法:
在研究或證明一個(gè)命題時(shí),又結(jié)論向已知條件追溯,既從結(jié)論開始,推求它成立的充分條件,這個(gè)條件的成立還不顯然;則再把它當(dāng)作結(jié)論,進(jìn)一步研究它成立的充分條件,直至達(dá)到已知條件為止,從而使命題得到證明。這種思維過程通常稱為“執(zhí)果尋因”
8、綜合法:
在研究或證明命題時(shí),如果推理的方向是從已知條件開始,逐步推導(dǎo)得到結(jié)論,這種思維過程通常稱為“由因?qū)Ч?rdquo;
9、演繹法:
由一般到特殊的推理方法。
10、歸納法:
由一般到特殊的推理方法。
11、類比法:
眾多客觀事物中,存在著一些相互之間有相似屬性的事物,在兩個(gè)或兩類事物之間;根據(jù)它們的某些屬性相同或相似,推出它們?cè)谄渌麑傩苑矫嬉部赡芟嗤蛳嗨频耐评矸椒ān惐确瓤赡苁翘厥獾教厥,也可能一般到一般的推理?br />
3函數(shù)、方程、不等式
常用的數(shù)學(xué)思想方法:
、艛(shù)形結(jié)合的思想方法。
、拼ㄏ禂(shù)法。
、桥浞椒。
⑷聯(lián)系與轉(zhuǎn)化的思想。
、蓤D像的平移變換。
4證明角的相等
1、對(duì)頂角相等。
2、角(或同角)的補(bǔ)角相等或余角相等。
3、兩直線平行,同位角相等、內(nèi)錯(cuò)角相等。
4、凡直角都相等。
歡迎使用手機(jī)、平板等移動(dòng)設(shè)備訪問中考網(wǎng),2023中考一路陪伴同行!>>點(diǎn)擊查看