來源:網(wǎng)絡(luò)資源 作者:中考網(wǎng)整理 2019-07-26 21:39:29
數(shù)學(xué)的解題方法是隨著對數(shù)學(xué)對象的研究的深入而發(fā)展起來的。 的同學(xué)們很快就要小學(xué)畢業(yè),中學(xué)的大門已經(jīng)向敞開。為了能進(jìn)一步學(xué)好數(shù)學(xué),有必要掌握初中數(shù)學(xué)的特點(diǎn)尤其是解題方法。下面介紹的解題方法,都是初中數(shù)學(xué)中最常用的,有些方法也是中學(xué)教學(xué)大綱要求掌握的。 判別式法與韋達(dá)定理 一元二次方程ax2+bx+c=0a、b、c屬于R,a=?0)根的判別,△=b2-4ac,不僅用來判定根的性質(zhì),而且作為一種解題方法,在代數(shù)式變形,解方程組),解不等式,研究函數(shù)乃至幾何、三角運(yùn)算中都有非常廣泛的應(yīng)用。 韋達(dá)定理除了已知一元二次方程的一個根,求另一根;已知兩個數(shù)的和與積,求這兩個數(shù)等簡單應(yīng)用外,還可以求根的對稱函數(shù),計(jì)論二次方程根的符號,解對稱方程組,以及解一些有關(guān)二次曲線的問題等,都有非常廣泛的應(yīng)用。
歡迎使用手機(jī)、平板等移動設(shè)備訪問中考網(wǎng),2023中考一路陪伴同行!>>點(diǎn)擊查看