來源:網(wǎng)絡(luò)資源 作者:中考網(wǎng)整理 2019-04-22 17:22:31
為提高 數(shù)學(xué)分?jǐn)?shù),考生也是下了不少功夫。教育網(wǎng)小編給大家說說中考數(shù)學(xué)第三輪復(fù)習(xí)提分,希望對大家有幫助。
中考數(shù)學(xué)第三輪復(fù)習(xí)提分
中考數(shù)學(xué)試題中有三大題型是比較容易拉分的,即實際應(yīng)用問題、幾何綜合題和動態(tài)綜合題。
一、實際應(yīng)用問題
實際應(yīng)用問題對很多初中生來說是一個數(shù)學(xué)學(xué)習(xí)難點。很多實際應(yīng)用問題背景設(shè)置的情境都是學(xué)生在生活中很少經(jīng)歷,造成學(xué)生對問題缺少最基本的感性認(rèn)識,這樣就會讓學(xué)生在閱讀和理解題干的時候造成干擾。
實際應(yīng)用問題在考查學(xué)生數(shù)學(xué)知識基礎(chǔ)同時,更是檢驗學(xué)生的數(shù)學(xué)能力水平。在初中數(shù)學(xué)知識范圍內(nèi),實際應(yīng)用問題一般指方程(組)和不等式(組):一元一次方程、二元一次方程(組)、一元二次方程、一元一次不等式(組)。
求解實際應(yīng)用問題,可以從以下幾步來思考:
1、審題。仔細(xì)閱讀題目,弄清題意,理順關(guān)系。讀題時要注意對語言去粗取精,提煉加工,抓住關(guān)鍵的字詞句。
2、建模。選取基本變量,將文字語言抽象概括成數(shù)學(xué)語言,依據(jù)有關(guān)定義、公理和數(shù)學(xué)知識,建立數(shù)學(xué)模型。
3、解模。根據(jù)數(shù)學(xué)知識和數(shù)學(xué)方法,求解數(shù)學(xué)模型,得到數(shù)學(xué)問題的結(jié)果。
4、檢驗(回歸)。把數(shù)學(xué)結(jié)果回歸到實際問題中去,通過分析、判斷、驗證得到實際問題的結(jié)果,回歸時要利用實際意義的條件進(jìn)行檢驗取舍,找出正確結(jié)果。
二、幾何綜合題型
幾何綜合題考查知識點多,條件隱晦,要求學(xué)生有較強的理解能力、分析能力、解決問題的能力,對數(shù)學(xué)基礎(chǔ)知識、數(shù)學(xué)基本方法有較強的駕馭能力,并有較強的創(chuàng)新意識和創(chuàng)新能力。
(1)幾何綜合題,常用相似與圓的有關(guān)知識作為考查重點,并貫穿幾何、代數(shù)、三角函數(shù)等知識,以證明、計算等題型出現(xiàn)。
(2)幾何計算是以幾何推理為基礎(chǔ)的幾何量的計算,主要有線段和弧的長度的計算,角的三角函數(shù)值的計算,以及各種圖形面積的計算等。
(3)幾何論證題主要考查學(xué)生綜合應(yīng)用所學(xué)幾何知識的能力。幾何論證型綜合問題,常以相似形、圓的知識為背景,串聯(lián)其他幾何知識。順利證明幾何問題取決于下列因素:
①熟悉各種常見問題的基本證明;
②能準(zhǔn)確添加基本輔助線;
③對復(fù)雜圖形能進(jìn)行恰當(dāng)?shù)姆纸馀c組合;
④善于選擇證題的起點并轉(zhuǎn)化問題。
幾何計算型綜合問題,其中以線段的計算最為常見,線段的計算通常是通過勾股定理、相交弦定理、切割線定理及推論、相似三角形對應(yīng)邊成比例所提供的等式進(jìn)行的,這些等式可以根據(jù)不同的已知條件轉(zhuǎn)化為方程或方程組。
一個方法
幾何圖形可以直觀的表示出來,在人們認(rèn)識圖形的初級階段主要依靠形象思維。人們對幾何圖形的認(rèn)識始于觀察、測量、比較等直觀實驗手段,人們可以通過直觀實驗了解幾何圖形,發(fā)現(xiàn)其中的規(guī)律。
一個策略
幾何證明常用的方法是綜合法,它是以題設(shè)作為出發(fā)點,根據(jù)已確定的公理和定理,逐步推理,直接推得結(jié)論成立(或問題解決)。在綜合法的思路過程中,我們應(yīng)當(dāng)研究由題設(shè)的條件(或部分的條件)能得出哪些中間結(jié)果,進(jìn)而再研究由這些中間結(jié)果(或它們的組合)又能得到哪些結(jié)果,如此繼續(xù)研究思考,直到推出題中的結(jié)論成立。
三、動態(tài)綜合題型
函數(shù)、相似、動態(tài)這三者放在一起,無論是平常考試還是 ,都會是一個“香餑餑”,甚至作為 的壓軸題。
1、利用已知三角形中對應(yīng)角、對應(yīng)邊,通過相似在未知三角形中利用勾股定理、三角函數(shù)、對稱、旋轉(zhuǎn)等知識來推導(dǎo)邊的大小。
2、當(dāng)三角形相似對應(yīng)點未確定時,先要分析已知三角形的邊和角的特點,進(jìn)而得出已知三角形是否為特殊三角形。根據(jù)未知三角形中已知邊與已知三角形的可能對應(yīng)邊分類討論。
3、若兩個三角形的各邊均未給出,應(yīng)先設(shè)所求點的坐標(biāo)進(jìn)而用函數(shù)解析式來表示各邊的長度,之后利用相似來列方程求解。
以上內(nèi)容是 數(shù)學(xué)第三輪復(fù)習(xí)提分,希望大家喜歡,總結(jié)方法,做好復(fù)習(xí),沖刺中考。
歡迎使用手機、平板等移動設(shè)備訪問中考網(wǎng),2023中考一路陪伴同行!>>點擊查看