來源:網(wǎng)絡(luò)資源 作者:中考網(wǎng)整理 2019-04-23 16:05:10
4三角形
易錯點1:三角形的概念以及三角形的角平分線,中線,高線的特征與區(qū)別。 易錯點2:三角形三邊之間的不等關(guān)系,注意其中的“任何兩邊”。最短距離的方法。 易錯點3:三角形的內(nèi)角和,三角形的分類與三角形內(nèi)外角性質(zhì),特別關(guān)注外角性質(zhì)中的“不相鄰”。 易錯點4:全等形,全等三角形及其性質(zhì),三角形全等判定。著重學(xué)會論證三角形全等,三角形相似與全等的綜合運用以及線段相等是全等的特征,線段的倍分是相似的特征以及相似與三角函數(shù)的結(jié)合。邊邊角兩個三角形不一定全等。 易錯點5:兩個角相等和平行經(jīng)常是相似的基本構(gòu)成要素,以及相似三角形對應(yīng)高之比等于相似比,對應(yīng)線段成比例,面積之比等于相似比的平方。 易錯點6:等腰(等邊)三角形的定義以及等腰(等邊)三角形的判定與性質(zhì),運用等腰(等邊)三角形的判定與性質(zhì)解決有關(guān)計算與證明問題,這里需注意分類討論思想的滲入。 易錯點7:運用勾股定理及其逆定理計算線段的長,證明線段的數(shù)量關(guān)系,解決與面積有關(guān)的問題以及簡單的實際問題。(2012年25題考點) 易錯點8:將直角三角形,平面直角坐標(biāo)系,函數(shù),開放性問題,探索性問題結(jié)合在一起綜合運用探究各種解題方法。 易錯點9:中點,中線,中位線,一半定理的歸納以及各自的性質(zhì)。 易錯點10:直角三角形判定方法:三角形面積的確定與底上的高(特別是鈍角三角形) 易錯點11:三角函數(shù)的定義中對應(yīng)線段的比經(jīng)常出錯以及特殊角的三角函數(shù)值。 易錯點1:平行四邊形的性質(zhì)和判定,如何靈活、恰當(dāng)?shù)貞?yīng)用。三角形的穩(wěn)定性與四邊形不穩(wěn)定性。 易錯點2:平行四邊形注意與三角形面積求法的區(qū)分。平行四邊形與特殊平行四邊形之間的轉(zhuǎn)化關(guān)系。 易錯點3:運用平行四邊形是中心對稱圖形,過對稱中心的直線把它分成面積相等的兩部分。對角線將四邊形分成面積相等的四部分。 易錯點4:平行四邊形中運用全等三角形和相似三角形的知識解題,突出轉(zhuǎn)化思想的滲透。 易錯點5:矩形、菱形、正方形的概念、性質(zhì)、判定及它們之間的關(guān)系,主要考查邊長、對角線長、面積等的計算。矩形與正方形的折疊,(23題必考) 易錯點6:四邊形中的翻折、平移、旋轉(zhuǎn)、剪拼等動手操作性問題,掌握其中的不變與旋轉(zhuǎn)一些性質(zhì)。(18題必考) 易錯點7:(25題可能用到)梯形問題的主要做輔助線的方法。 易錯點1:對弧、弦、圓周角等概念理解不深刻,特別是弦所對的圓周角有兩種情況要特別注意,兩條弦之間的距離也要考慮兩種情況。(選題最后一題考) 易錯點2:對垂徑定理的理解不夠,不會正確添加輔助線運用直角三角形進行解題。 易錯點3:對切線的定義及性質(zhì)理解不深,不能準(zhǔn)確的利用切線的性質(zhì)進行解題以及對切線的判定方法兩種方法使用不熟練。 易錯點4:考查圓與圓的位置關(guān)系時,相切有內(nèi)切和外切兩種情況,包括相交也存在兩圓圓心在公共弦同側(cè)和異側(cè)兩種情況,學(xué)生很容易忽視其中的一種情況。(25題分類討論) 易錯點5:與圓有關(guān)的位置關(guān)系把握好d與R和R+r,R-r之間的關(guān)系以及應(yīng)用上述的方法求解。 易錯點6:圓周角定理是重點,同弧(等弧)所對的圓周角相等,直徑所對的圓周角是直角。直角的圓周角所對的弦是直徑,一條弧所對的圓周角等于它所對的圓心角的一半。 易錯點7:幾個公式一定要牢記:三角形、平行四邊形、菱形、矩形、正方形、梯形、圓的面積公式,圓周長公式,弧長,扇形面積,圓錐的側(cè)面積以及全面積以及弧長與底面周長,母線長與扇形的半徑之間的轉(zhuǎn)化關(guān)系。 易錯點1:軸對稱、軸對稱圖形,及中心對稱、中心對稱圖形概念和性質(zhì)把握不準(zhǔn)。(2014第五題) 易錯點2:圖形的軸對稱或旋轉(zhuǎn)問題,要充分運用其性質(zhì)解題,即運用圖形的“不變性”,在軸對稱和旋轉(zhuǎn)中角的大小不變,線段的長短不變。 易錯點3:將軸對稱與全等混淆,關(guān)于直線對稱與關(guān)于軸對稱混淆。
歡迎使用手機、平板等移動設(shè)備訪問中考網(wǎng),2024中考一路陪伴同行!>>點擊查看