來(lái)源:中考網(wǎng)整理 作者:中考網(wǎng)編輯 2016-10-31 10:33:47
添輔助線有二種情況:
1按定義添輔助線:
如證明二直線垂直可延長(zhǎng)使它們,相交后證交角為90°;證線段倍半關(guān)系可倍線段取中點(diǎn)或半線段加倍;證角的倍半關(guān)系也可類似添輔助線。
2按基本圖形添輔助線:
每個(gè)幾何定理都有與它相對(duì)應(yīng)的幾何圖形,我們把它叫做基本圖形,添輔助線往往是具有基本圖形的性質(zhì)而基本圖形不完整時(shí)補(bǔ)完整基本圖形,因此“添線”應(yīng)該叫做“補(bǔ)圖”!這樣可防止亂添線,添輔助線也有規(guī)律可循。舉例如下:
(1)平行線是個(gè)基本圖形:
當(dāng)幾何中出現(xiàn)平行線時(shí)添輔助線的關(guān)鍵是添與二條平行線都相交的等第三條直線
。2)等腰三角形是個(gè)簡(jiǎn)單的基本圖形:
當(dāng)幾何問(wèn)題中出現(xiàn)一點(diǎn)發(fā)出的二條相等線段時(shí)往往要補(bǔ)完整等腰三角形。出現(xiàn)角平分線與平行線組合時(shí)可延長(zhǎng)平行線與角的二邊相交得等腰三角形。
(3)等腰三角形中的重要線段是個(gè)重要的基本圖形:
出現(xiàn)等腰三角形底邊上的中點(diǎn)添底邊上的中線;出現(xiàn)角平分線與垂線組合時(shí)可延長(zhǎng)垂線與角的二邊相交得等腰三角形中的重要線段的基本圖形。
(4)直角三角形斜邊上中線基本圖形
出現(xiàn)直角三角形斜邊上的中點(diǎn)往往添斜邊上的中線。出現(xiàn)線段倍半關(guān)系且倍線段是直角三角形的斜邊則要添直角三角形斜邊上的中線得直角三角形斜邊上中線基本圖形。
。5)三角形中位線基本圖形
幾何問(wèn)題中出現(xiàn)多個(gè)中點(diǎn)時(shí)往往添加三角形中位線基本圖形進(jìn)行證明當(dāng)有中點(diǎn)沒(méi)有中位線時(shí)則添中位線,當(dāng)有中位線三角形不完整時(shí)則需補(bǔ)完整三角形;當(dāng)出現(xiàn)線段倍半關(guān)系且與倍線段有公共端點(diǎn)的線段帶一個(gè)中點(diǎn)則可過(guò)這中點(diǎn)添倍線段的平行線得三角形中位線基本圖形;當(dāng)出現(xiàn)線段倍半關(guān)系且與半線段的端點(diǎn)是某線段的中點(diǎn),則可過(guò)帶中點(diǎn)線段的端點(diǎn)添半線段的平行線得三角形中位線基本圖形。
。6)全等三角形:
全等三角形有軸對(duì)稱形,中心對(duì)稱形,旋轉(zhuǎn)形與平移形等;如果出現(xiàn)兩條相等線段或兩個(gè)檔相等角關(guān)于某一直線成軸對(duì)稱就可以添加軸對(duì)稱形全等三角形:或添對(duì)稱軸,或?qū)⑷切窝貙?duì)稱軸翻轉(zhuǎn)。當(dāng)幾何問(wèn)題中出現(xiàn)一組或兩組相等線段位于一組對(duì)頂角兩邊且成一直線時(shí)可添加中心對(duì)稱形全等三角形加以證明,添加方法是將四個(gè)端點(diǎn)兩兩連結(jié)或過(guò)二端點(diǎn)添平行線
(8)特殊角直角三角形
當(dāng)出現(xiàn)30,45,60,135,150度特殊角時(shí)可添加特殊角直角三角形,利用45角直角三角形三邊比為1:1:√2;30度角直角三角形三邊比為1:2:√3進(jìn)行證明
歡迎使用手機(jī)、平板等移動(dòng)設(shè)備訪問(wèn)中考網(wǎng),2024中考一路陪伴同行!>>點(diǎn)擊查看