中考網(wǎng)
全國站
快捷導(dǎo)航 中考政策指南 2024熱門中考資訊 中考成績查詢 歷年中考分?jǐn)?shù)線 中考志愿填報(bào) 各地2019中考大事記 中考真題及答案大全 歷年中考作文大全 返回首頁
您現(xiàn)在的位置:中考 > 初中數(shù)學(xué) > 函數(shù) > 正文

初中數(shù)學(xué)圖形的認(rèn)識定理與公式(3)

來源:中考網(wǎng)整合 作者:中考網(wǎng)編輯 2016-06-20 14:57:52

中考真題

智能內(nèi)容

  平行四邊形的判定:

 、賰山M對角分別相等的四邊形是平行四邊形;

  ②兩組對邊分別相等的四邊形是平行四邊形;

 、蹖蔷互相平分的四邊形是平行四邊形;

 、芤唤M對邊平行且相等的四邊形是平行四邊形。

  矩形的性質(zhì):(除具有平行四邊形所有性質(zhì)外)

 、倬匦蔚乃膫(gè)角都是直角;

 、诰匦蔚膶蔷相等;

  矩形的判定:

  ①有三個(gè)角是直角的四邊形是矩形;

 、趯蔷相等的平行四邊形是矩形;

  菱形的特征:(除具有平行四邊形所有性質(zhì)外)

  ①菱形的四邊相等;

 、诹庑蔚膶蔷互相垂直平分,并且每一條對角線平分一組對角;

  菱形的判定:

  四邊相等的四邊形是菱形;

  正方形的特征:

  ①正方形的四邊相等;

 、谡叫蔚乃膫(gè)角都是直角;

 、壅叫蔚膬蓷l對角線相等,且互相垂直平分,每一條對角線平分一組對角;

  正方形的判定:

 、儆幸粋(gè)角是直角的菱形是正方形;

 、谟幸唤M鄰邊相等的矩形是正方形。

  等腰梯形的特征:

  ①等腰梯形同一底邊上的兩個(gè)內(nèi)角相等

 、诘妊菪蔚膬蓷l對角線相等。

  等腰梯形的判定:

 、偻坏走吷系膬蓚(gè)內(nèi)角相等的梯形是等腰梯形;

 、趦蓷l對角線相等的梯形是等腰梯形。

  平面圖形的鑲嵌:

  任意一個(gè)三角形、四邊形或正六邊形可以鑲嵌平面;

  (5)圓

  點(diǎn)與圓的位置關(guān)系(設(shè)圓的半徑為r,點(diǎn)P到圓心O的距離為d):

 、冱c(diǎn)P在圓上,則d=r,反之也成立;

 、邳c(diǎn)P在圓內(nèi),則d
 、埸c(diǎn)P在圓外,則d>r,反之也成立;

  圓心角、弦和弧三者之間的關(guān)系:在同圓或等圓中,圓心角、弦和弧三者之間只要有一組相等,可以得到另外兩組也相等;

  圓的確定:不在一直線上的三個(gè)點(diǎn)確定一個(gè)圓;

  垂徑定理(及垂徑定理的推論):垂直于弦的直徑平分弦,并且平分弦所對的兩條;

  平行弦夾等。簣A的兩條平行弦所夾的弧相等;

  圓心角定理:圓心角的度數(shù)等于它所對弧的度數(shù);

  圓心角、弧、弦、弦心距之間的關(guān)系定理及推論:在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦的弦心距相等;

  推論:在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩條弦心距中有一組量相等,那么它們所對應(yīng)的其余各組量分別相等;

  圓周角定理:圓周角的度數(shù)等于它所對的弧的度數(shù)的一半;

  圓周角定理的推論:直徑所對的圓周角是直角,反過來,的圓周角所對的弦是直徑;

  切線的判定定理:經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線;

  切線的性質(zhì)定理:圓的切線垂直于過切點(diǎn)的半徑;

  切線長定理:從圓外一點(diǎn)引圓的兩條切線,這一點(diǎn)到兩切點(diǎn)的線段相等,它與圓心的連線平分兩切線的夾角;

  (6)尺規(guī)作圖(基本作圖、利用基本圖形作三角形和圓)

  作一條線段等于已知線段,作一個(gè)角等于已知角;作已知角的平分線;作線段的垂直平分線;過一點(diǎn)作已知直線的垂線;

  (7)視圖與投影

  畫基本幾何體(直棱柱、圓柱、圓錐、球)的三視圖(主視圖、左視圖、俯視圖);

  基本幾何體的展開圖(除球外)、根據(jù)展開圖判斷和設(shè)別立體模型;

   歡迎使用手機(jī)、平板等移動設(shè)備訪問中考網(wǎng),2024中考一路陪伴同行!>>點(diǎn)擊查看

  • 歡迎掃描二維碼
    關(guān)注中考網(wǎng)微信
    ID:zhongkao_com

  • 歡迎掃描二維碼
    關(guān)注高考網(wǎng)微信
    ID:www_gaokao_com

  • 歡迎微信掃碼
    關(guān)注初三學(xué)習(xí)社
    中考網(wǎng)官方服務(wù)號

熱點(diǎn)專題

  • 2024年全國各省市中考作文題目匯總
  • 2024中考真題答案專題
  • 2024中考查分時(shí)間專題

[2024中考]2024中考分?jǐn)?shù)線專題

[2024中考]2024中考逐夢前行 未來可期!

中考報(bào)考

中考報(bào)名時(shí)間

中考查分時(shí)間

中考志愿填報(bào)

各省分?jǐn)?shù)線

中考體育考試

中考中招考試

中考備考

中考答題技巧

中考考前心理

中考考前飲食

中考家長必讀

中考提分策略

重點(diǎn)高中

北京重點(diǎn)中學(xué)

上海重點(diǎn)中學(xué)

廣州重點(diǎn)中學(xué)

深圳重點(diǎn)中學(xué)

天津重點(diǎn)中學(xué)

成都重點(diǎn)中學(xué)

試題資料

中考壓軸題

中考模擬題

各科練習(xí)題

單元測試題

初中期中試題

初中期末試題

中考大事記

北京中考大事記

天津中考大事記

重慶中考大事記

西安中考大事記

沈陽中考大事記

濟(jì)南中考大事記

知識點(diǎn)

初中數(shù)學(xué)知識點(diǎn)

初中物理知識點(diǎn)

初中化學(xué)知識點(diǎn)

初中英語知識點(diǎn)

初中語文知識點(diǎn)

中考滿分作文

初中資源

初中語文

初中數(shù)學(xué)

初中英語

初中物理

初中化學(xué)

中學(xué)百科