來源:中考網(wǎng)整合 2011-11-03 14:10:57
第二章 代數(shù)式
★重點(diǎn)★代數(shù)式的有關(guān)概念及性質(zhì),代數(shù)式的運(yùn)算
☆內(nèi)容提要☆
一、重要概念
分類:
1。代數(shù)式與有理式
用運(yùn)算符號把數(shù)或表示數(shù)的字母連結(jié)而成的式子,叫做代數(shù)式。單獨(dú)
的一個數(shù)或字母也是代數(shù)式。
整式和分式統(tǒng)稱為有理式。
2。整式和分式
含有加、減、乘、除、乘方運(yùn)算的代數(shù)式叫做有理式。
沒有除法運(yùn)算或雖有除法運(yùn)算但除式中不含有字母的有理式叫做整式。
有除法運(yùn)算并且除式中含有字母的有理式叫做分式。
3。單項(xiàng)式與多項(xiàng)式
沒有加減運(yùn)算的整式叫做單項(xiàng)式。(數(shù)字與字母的積—包括單獨(dú)的一個數(shù)或字母)
幾個單項(xiàng)式的和,叫做多項(xiàng)式。
說明:①根據(jù)除式中有否字母,將整式和分式區(qū)別開;根據(jù)整式中有否加減運(yùn)算,把單項(xiàng)式、多項(xiàng)式區(qū)分開。②進(jìn)行代數(shù)式分類時,是以所給的代數(shù)式為對象,而非以變形后的代數(shù)式為對象。劃分代數(shù)式類別時,是從外形來看。如,
=x, =│x│等。
4。系數(shù)與指數(shù)
區(qū)別與聯(lián)系:①從位置上看;②從表示的意義上看
5。同類項(xiàng)及其合并
條件:①字母相同;②相同字母的指數(shù)相同
合并依據(jù):乘法分配律
6。根式
表示方根的代數(shù)式叫做根式。
含有關(guān)于字母開方運(yùn)算的代數(shù)式叫做無理式。
注意:①從外形上判斷;②區(qū)別: 、 是根式,但不是無理式(是無理數(shù))。
7。算術(shù)平方根
⑴正數(shù)a的正的平方根( [a≥0—與“平方根”的區(qū)別]);
、扑阈g(shù)平方根與絕對值
、俾(lián)系:都是非負(fù)數(shù), =│a│
、趨^(qū)別:│a│中,a為一切實(shí)數(shù);中,a為非負(fù)數(shù)。
8。同類二次根式、最簡二次根式、分母有理化
化為最簡二次根式以后,被開方數(shù)相同的二次根式叫做同類二次根式。
滿足條件:①被開方數(shù)的因數(shù)是整數(shù),因式是整式;②被開方數(shù)中不含有開得盡方的因數(shù)或因式。
把分母中的根號劃去叫做分母有理化。
9。指數(shù)
、 ( —冪,乘方運(yùn)算)
① a>0時, >0;②a<0時, >0(n是偶數(shù)), <0(n是奇數(shù))
、屏阒笖(shù): =1(a≠0)
負(fù)整指數(shù): =1/ (a≠0,p是正整數(shù))
二、運(yùn)算定律、性質(zhì)、法則
1。分式的加、減、乘、除、乘方、開方法則
2。分式的性質(zhì)
、呕拘再|(zhì): = (m≠0)
⑵符號法則:
、欠狈质剑孩俣x;②化簡方法(兩種)
3。整式運(yùn)算法則(去括號、添括號法則)
4。冪的運(yùn)算性質(zhì):① · = ;② ÷ = ;③ = ;④ = ;⑤
技巧:
5。乘法法則:⑴單×單;⑵單×多;⑶多×多。
6。乘法公式:(正、逆用)
(a+b)(a-b)=
(a±b) =
7。除法法則:⑴單÷單;⑵多÷單。
8。因式分解:⑴定義;⑵方法:A。提公因式法;B。公式法;C。十字相乘法;D。分組分解法;E。求根公式法。
9。算術(shù)根的性質(zhì): = ; ; (a≥0,b≥0); (a≥0,b>0)(正用、逆用)
10。根式運(yùn)算法則:⑴加法法則(合并同類二次根式);⑵乘、除法法則;⑶分母有理化:A. ;B. ;C. 。
11?茖W(xué)記數(shù)法: (1≤a<10,n是整數(shù)=
三、應(yīng)用舉例(略)
四、數(shù)式綜合運(yùn)算(略)
歡迎使用手機(jī)、平板等移動設(shè)備訪問中考網(wǎng),2023中考一路陪伴同行!>>點(diǎn)擊查看