一、正視學(xué)生解題的錯誤
在初中數(shù)學(xué)教學(xué)中,教師害怕學(xué)生出現(xiàn)解題錯誤,對錯誤采取嚴厲禁止的態(tài)度是司空見慣的。在這種懼怕心理支配下,教師只注重教給學(xué)生正確的結(jié)論,忽視揭示知識形成的過程,害怕因啟發(fā)學(xué)生進行討論會得出錯誤的結(jié)論。長此以往,學(xué)生雖片面接受了正確的知識,但對錯誤的出現(xiàn)缺乏心理準備,看不出錯誤或看出錯誤但改不對,甚而弄不清錯誤的緣由。持這種態(tài)度的教師只關(guān)心學(xué)生用對知識而忽視學(xué)生會用知識。例如,在講有理數(shù)運算時,由于只注重得出正確的結(jié)果,強調(diào)運算法則、運算順序,而對運用運算律簡化運算注意不夠,但后者對發(fā)展學(xué)生運算能力卻更為重要?傊,這種對待錯誤的態(tài)度會對教學(xué)帶來一些消極的影響。
事實上,錯誤是正確的先導(dǎo),成功的開始。有道是失敗是成功之母。學(xué)生所犯錯誤及其對錯誤的認識,是學(xué)生獲得和鞏固知識的重要途徑。
基于上述原因,教師對待錯誤的懼怕心理和嚴厲態(tài)度轉(zhuǎn)變?yōu)槌惺苄睦砗蛯捜輵B(tài)度是十分有意義的。因為數(shù)學(xué)學(xué)習(xí)實際上是不斷地提出假設(shè),修正假設(shè),使學(xué)生對數(shù)學(xué)的認知水平不斷復(fù)雜化,甚而趨于成熟。從這個意義上說,錯誤不過是學(xué)生在數(shù)學(xué)學(xué)習(xí)過程中所做的某種嘗試,它只能反映學(xué)生在數(shù)學(xué)學(xué)習(xí)的某個階段的水平,而不能代表其最終的實際水平。此外,正是由于這些假設(shè)的不斷提出與修正,才使學(xué)生的能力不斷提高。因此,揭示錯誤是為了盡量減少錯誤,我們所說的承受與寬容也是相對于這一過程而言的。在教學(xué)中給學(xué)生展示的這一嘗試、修正的過程,是與學(xué)生獨立解題的過程相吻合的。因而學(xué)生在教師教學(xué)過程中學(xué)到的不僅僅是正確的結(jié)論,而且領(lǐng)略了探索、嘗試的過程,這對學(xué)生知識的完善和能力的提高會產(chǎn)生有益的影響,使學(xué)生學(xué)會分析,自己發(fā)現(xiàn)錯誤,改正錯誤。教師只有具備這樣的承受心理與寬容態(tài)度,才會耐心尋找學(xué)生解題錯誤的原因,并做出適當?shù)奶幚怼?/p>
二、初中學(xué)生解題錯誤的原因
學(xué)生能順利正確地解題,表明其在觀察、分析問題,提取、運用相應(yīng)知識的環(huán)節(jié)上沒有受到干擾或者說克服了干擾。在上述環(huán)節(jié)上不能排除干擾,就會出現(xiàn)解題錯誤。就初中學(xué)生解題錯誤而言,造成錯誤的干擾來自以下兩方面:一是小學(xué)數(shù)學(xué)的干擾,二是初中數(shù)學(xué)前后知識的干擾。
1、小學(xué)數(shù)學(xué)的干擾
在初中一開始,學(xué)生學(xué)習(xí)小學(xué)數(shù)學(xué)形成的某些認識會妨礙他們學(xué)習(xí)代數(shù)初步知識,使其產(chǎn)生解題錯誤。?
例如,在小學(xué)數(shù)學(xué)中,解題結(jié)果常常是一個確定的數(shù)。受此影響,學(xué)生在解答下述問題時出現(xiàn)混亂與錯誤。原題是這樣的:
禮堂第一排有a個座位,后面每排都比前1排多1個座位,第2排有幾個座位?第3排呢?設(shè)m為第n排的座位數(shù),那么m是多少?求 a=20,n=19時,m的值。學(xué)生在解答上述問題時,受結(jié)果是確定的數(shù)的影響,把用n表示m與求m的值混為一談,暴露出其思考過程受到上述干擾的痕跡。
又有,在小學(xué)減法運算中被減數(shù)比減數(shù)大的認識根深蒂固,記得在初一上學(xué)期的一次摸底測試中,有這么一道題:2+2—3,部分學(xué)生一看到“2— 3”這一部分,就說這道題無法完成,殊不知還有運算順序的問題。
再有,學(xué)生習(xí)慣有理數(shù)的運算,這會對學(xué)生學(xué)習(xí)二次根式的運算產(chǎn)生干擾。如:計算7+3(3)1/2+2(3)1/2,有的學(xué)生的結(jié)果是 12(3)1/2,這顯然是錯的。
總之,初中開始階段,學(xué)生解題錯誤的原因?勺匪莸叫W(xué)數(shù)學(xué)知識對其新學(xué)知識的影響。講清新學(xué)知識的意義(如用字母表示數(shù))、范圍(正數(shù)、0、負數(shù))、方法(代數(shù)和、代數(shù)方法)與舊有知識(具體數(shù)字、非負數(shù)、加減運算、算術(shù)方法)的不同,有助于克服干擾,減少錯誤。
2、初中數(shù)學(xué)前后知識的干擾
隨著初中知識的展開,初中數(shù)學(xué)知識本身也會前后相互干擾。
例如,在學(xué)有理數(shù)的減法時,教師反復(fù)強調(diào)減去一個數(shù)等于加上它的相反數(shù),因而3-7中7前面的符號“-”是減號給學(xué)生留下了深刻的印象。緊接著學(xué)習(xí)代數(shù)和,又要強調(diào)把3-7看成正3與負7之和,“-”又成了負號。學(xué)生不禁產(chǎn)生到底要把“-”看成減號還是負號的困惑。這個困惑不能很好地消除,學(xué)生就會產(chǎn)生運算錯誤。
又如,了解不等式的解集以及運用不等式基本性質(zhì)3是不等式教學(xué)的一個難點,學(xué)生常常在這里犯錯誤,其原因就是受等式的性質(zhì)2以及方程的解是一個數(shù)的干擾。事實也證明,把不等式的有關(guān)內(nèi)容與等式及方程的相應(yīng)內(nèi)容加以比較,使學(xué)生理解兩者的異同,有助于學(xué)生學(xué)好不等式的內(nèi)容?梢妼Ρ冉虒W(xué)法對學(xué)生錯誤的形成,前后知識的干擾有一定的影響作用。
學(xué)生在解決簡單問題與綜合問題時的表現(xiàn)也可以說明這個問題。學(xué)生在解答簡單問題時,需要提取、運用的知識少,因而受到知識間的干擾小,產(chǎn)生錯誤的可能性;而遇到綜合問題,在知識的選取、運用上受到的干擾大,容易出錯。
總之,這種知識的前后干擾,常常使學(xué)生在學(xué)習(xí)新知識時出現(xiàn)困惑,在解題時選錯或用錯知識,導(dǎo)致錯誤的發(fā)生。
三、減少初中數(shù)學(xué)解題錯誤的方法
由上所述,學(xué)生不能順利正確地完成解題,產(chǎn)生解題錯誤,表明學(xué)生在解題過程中受到干擾。因此,減少初中解題錯誤的方法是預(yù)防和排除干擾。為此,要抓好課前、課內(nèi)、課后三個環(huán)節(jié)。