來源:中考網(wǎng)整合 作者:中考網(wǎng)整合 2009-12-07 17:59:49
光速是物理學(xué)中最重要的基本常數(shù)之一,也是所有各種頻率的電磁波在真空中的傳播速度.狹義相對論認為:任何信號和物體的速度都不能超過真空中的光速.在折射率為n的介質(zhì)中,光的傳播速度為:v=c/n.在光學(xué)和物理學(xué)的發(fā)展歷史上,光速的測定,一直是許多科學(xué)家為之探索的課題.許多光速測量方法那巧妙的構(gòu)思、高超的實驗設(shè)計一直在啟迪著后人的物理學(xué)研究.歷史上光速測量方法可以分為天文學(xué)測量方法、大地測量方法和實驗室測量方法等
一、光速測定的天文學(xué)方法
1.羅默的衛(wèi)星蝕法
光速的測量,首先在天文學(xué)上獲得成功,這是因為宇宙廣闊的空間提供了測量光速所需要的足夠大的距離.早在1676年丹麥天文學(xué)家羅默(1644—1710)首先測量了光速.由于任何周期性的變化過程都可當(dāng)作時鐘,他成功地找到了離觀察者非常遙遠而相當(dāng)準(zhǔn)確的“時鐘”,羅默在觀察時所用的是木星每隔一定周期所出現(xiàn)的一次衛(wèi)星蝕.他在觀察時注意到:連續(xù)兩次衛(wèi)星蝕相隔的時間,當(dāng)?shù)厍虮畴x木星運動時,要比地球迎向木星運動時要長一些,他用光的傳播速度是有限的來解釋這個現(xiàn)象.光從木星發(fā)出(實際上是木星的衛(wèi)星發(fā)出),當(dāng)?shù)厍螂x開木星運動時,光必須追上地球,因而從地面上觀察木星的兩次衛(wèi)星蝕相隔的時間,要比實際相隔的時間長一些;當(dāng)?shù)厍蛴蚰拘沁\動時,這個時間就短一些.因為衛(wèi)星繞木星的周期不大(約為1.75天),所以上述時間差數(shù),在最合適的時間(上圖中地球運行到軌道上的A和A’兩點時)不致超過15秒(地球的公轉(zhuǎn)軌道速度約為30千米/秒).因此,為了取得可靠的結(jié)果,當(dāng)時的觀察曾在整年中連續(xù)地進行.羅默通過觀察從衛(wèi)星蝕的時間變化和地球軌道直徑求出了光速.由于當(dāng)時只知道地球軌道半徑的近似值,故求出的光速只有214300km/s.這個光速值盡管離光速的準(zhǔn)確值相差甚遠,但它卻是測定光速歷史上的第一個記錄.后來人們用照相方法測量木星衛(wèi)星蝕的時間,并在地球軌道半徑測量準(zhǔn)確度提高后,用羅默法求得的光速為299840±60km/s.
2.布萊德雷的光行差法
1728年,英國天文學(xué)家布萊德雷(1693—1762)采用恒星的光行差法,再一次得出光速是一有限的物理量.布萊德雷在地球上觀察恒星時,發(fā)現(xiàn)恒星的視位置在不斷地變化,在一年之內(nèi),所有恒星似乎都在天頂上繞著半長軸相等的橢圓運行了一周.他認為這種現(xiàn)象的產(chǎn)生是由于恒星發(fā)出的光傳到地面時需要一定的時間,而在此時間內(nèi),地球已因公轉(zhuǎn)而發(fā)生了位置的變化.他由此測得光速為:
C=299930千米/秒
這一數(shù)值與實際值比較接近.
以上僅是利用天文學(xué)的現(xiàn)象和觀察數(shù)值對光速的測定,而在實驗室內(nèi)限于當(dāng)時的條件,測定光速尚不能實現(xiàn).
二、光速測定的大地測量方法
光速的測定包含著對光所通過的距離和所需時間的量度,由于光速很大,所以必須測量一個很長的距離和一個很短的時間,大地測量法就是圍繞著如何準(zhǔn)確測定距離和時間而設(shè)計的各種方法.
1.伽利略測定光速的方法
物理學(xué)發(fā)展史上,最早提出測量光速的是意大利物理學(xué)家伽利略.1607年在他的實驗中,讓相距甚遠的兩個觀察者,各執(zhí)一盞能遮閉的燈,如圖所示:觀察者A打開燈光,經(jīng)過一定時間后,光到達觀察者B,B立即打開自己的燈光,過了某一時間后,此信號回到A,于是A可以記下從他自己開燈的一瞬間,到信號從B返回到A的一瞬間所經(jīng)過的時間間隔t.若兩觀察者的距離為S,則光的速度為
c=2s/t
因為光速很大,加之觀察者還要有一定的反應(yīng)時間,所以伽利略的嘗試沒有成功.如果用反射鏡來代替B,那么情況有所改善,這樣就可以避免觀察者所引入的誤差.這種測量原理長遠地保留在后來的一切測定光速的實驗方法之中.甚至在現(xiàn)代測定光速的實驗中仍然采用.但在信號接收上和時間測量上,要采用可靠的方法.使用這些方法甚至能在不太長的距離上測定光速,并達到足夠高的精確度.
2.旋轉(zhuǎn)齒輪法
用實驗方法測定光速首先是在1849年由斐索實驗.他用定期遮斷光線的方法(旋轉(zhuǎn)齒輪法)進行自動記錄.實驗示意圖如下.從光源s發(fā)出的光經(jīng)會聚透鏡L1射到半鍍銀的鏡面A,由此反射后在齒輪W的齒a和a’之間的空隙內(nèi)會聚,再經(jīng)透鏡L2和L3而達到反射鏡M,然后再反射回來.又通過半鍍鏡A由L4集聚后射入觀察者的眼睛E.如使齒輪轉(zhuǎn)動,那么在光達到M鏡后再反射回來時所經(jīng)過的時間△t內(nèi),齒輪將轉(zhuǎn)過一個角度.如果這時a與a’之間的空隙為齒a(或a’)所占據(jù),則反射回來的光將被遮斷,因而觀察者將看不到光.但如齒輪轉(zhuǎn)到這樣一個角度,使由M鏡反射回來的光從另一齒間空隙通過,那么觀察者會重新看到光,當(dāng)齒輪轉(zhuǎn)動得更快,反射光又被另一個齒遮斷時,光又消失.這樣,當(dāng)齒輪轉(zhuǎn)速由零而逐漸加快時,在E處將看到閃光.由齒輪轉(zhuǎn)速v、齒數(shù)n與齒輪和M的間距L可推得光速c=4nvL.
在斐索所做的實驗中,當(dāng)具有720齒的齒輪,一秒鐘內(nèi)轉(zhuǎn)動12.67次時,光將首次被擋住而消失,空隙與輪齒交替所需時間為
在這一時間內(nèi),光所經(jīng)過的光程為2×8633米,所以光速c=2×8633×18244=3.15×108(m/s).
在對信號的發(fā)出和返回接收時刻能作自動記錄的遮斷法除旋轉(zhuǎn)齒輪法外,在現(xiàn)代還采用克爾盒法.1941年安德孫用克爾盒法測得:c=299776±6km/s,1951年貝格斯格蘭又用克爾盒法測得c=299793.1±0.3km/s.
3.旋轉(zhuǎn)鏡法
旋轉(zhuǎn)鏡法的主要特點是能對信號的傳播時間作精確測量.1851年傅科成功地運用此法測定了光速.旋轉(zhuǎn)鏡法的原理早在1834年1838年就已為惠更斯和阿拉果提出過,它主要用一個高速均勻轉(zhuǎn)動的鏡面來代替齒輪裝置.由于光源較強,而且聚焦得較好.因此能極其精密地測量很短的時間間隔.實驗裝置如圖所示.從光源s所發(fā)出的光通過半鍍銀的鏡面M1后,經(jīng)過透鏡L射在繞O軸旋轉(zhuǎn)的平面反射鏡M2上O軸與圖面垂直.光從M2反射而會聚到凹面反射鏡M3上,M3的曲率中心恰在O軸上,所以光線由M3對稱地反射,并在s′點產(chǎn)生光源的像.當(dāng)M2的轉(zhuǎn)速足夠快時,像S′的位置將改變到s〃,相對于可視M2為不轉(zhuǎn)時的位置移動了△s的距離可以推導(dǎo)出光速值:
式中w為M2轉(zhuǎn)動的角速度.l0為M2到M3的間距,l為透鏡L到光源S的間距,△s為s的像移動的距離.因此直接測量w、l、l0、△s,便可求得光速.
在傅科的實驗中:L=4米,L0=20米,△s=0.0007米,W=800×2π弧度/秒,他求得光速值c=298000±500km/s.
另外,傅科還利用這個實驗的基本原理,首次測出了光在介質(zhì)(水)中的速度v<c,這是對波動說的有力證據(jù).
3.旋轉(zhuǎn)棱鏡法
邁克耳遜把齒輪法和旋轉(zhuǎn)鏡法結(jié)合起來,創(chuàng)造了旋轉(zhuǎn)棱鏡法裝置.因為齒輪法之所以不夠準(zhǔn)確,是由于不僅當(dāng)齒的中央將光遮斷時變暗,而且當(dāng)齒的邊緣遮斷光時也是如此.因此不能精確地測定象消失的瞬時.旋轉(zhuǎn)鏡法也不夠精確,因為在該法中象的位移△s太小,只有0.7毫米,不易測準(zhǔn).邁克耳遜的旋轉(zhuǎn)鏡法克服了這些缺點.他用一個正八面鋼質(zhì)棱鏡代替了旋轉(zhuǎn)鏡法中的旋轉(zhuǎn)平面鏡,從而光路大大的增長,并利用精確地測定棱鏡的轉(zhuǎn)動速度代替測齒輪法中的齒輪轉(zhuǎn)速測出光走完整個路程所需的時間,從而減少了測量誤差.從1879年至1926年,邁克耳遜曾前后從事光速的測量工作近五十年,在這方面付出了極大的勞動.1926年他的最后一個光速測定值為
c=299796km/s
這是當(dāng)時最精確的測定值,很快成為當(dāng)時光速的公認值.
三、光速測定的實驗室方法
光速測定的天文學(xué)方法和大地測量方法,都是采用測定光信號的傳播距離和傳播時間來確定光速的.這就要求要盡可能地增加光程,改進時間測量的準(zhǔn)確性.這在實驗室里一般是受時空限制的,而只能在大地野外進行,如斐索的旋輪齒輪法當(dāng)時是在巴黎的蘇冷與達蒙瑪特勒相距8633米的兩地進行的.傅科的旋轉(zhuǎn)鏡法當(dāng)時也是在野外,邁克耳遜當(dāng)時是在相距35373.21米的兩個山峰上完成的.現(xiàn)代科學(xué)技術(shù)的發(fā)展,使人們可以使用更小更精確地實驗儀器在實驗室中進行光速的測量.
1.微波諧振腔法
1950年埃森最先采用測定微波波長和頻率的方法來確定光速.在他的實驗中,將微波輸入到圓柱形的諧振腔中,當(dāng)微波波長和諧振腔的幾何尺寸匹配時,諧振腔的圓周長πD和波長之比有如下的關(guān)系:πD=2.404825λ,因此可以通過諧振腔直徑的測定來確定波長,而直徑則用干涉法測量;頻率用逐級差頻法測定.測量精度達10-7.在埃森的實驗中,所用微波的波長為10厘米,所得光速的結(jié)果為299792.5±1km/s.
2.激光測速法
1790年美國國家標(biāo)準(zhǔn)局和美國國立物理實驗室最先運用激光測定光速.這個方法的原理是同時測定激光的波長和頻率來確定光速(c=νλ).由于激光的頻率和波長的測量精確度已大大提高,所以用激光測速法的測量精度可達10-9,比以前已有最精密的實驗方法提高精度約100倍.
四、光速測量方法一覽表
除了以上介紹的幾種測量光速的方法外,還有許多十分精確的測定光速的方法.現(xiàn)將不同方法測定的光速值列為“光速測量一覽表”供參考.
根據(jù)1975年第十五屆國際計量大會的決議,現(xiàn)代真空中光速的最可靠值是:
c=299792.458±0.001km/s
歡迎使用手機、平板等移動設(shè)備訪問中考網(wǎng),2023中考一路陪伴同行!>>點擊查看