來源:本站原創(chuàng) 2009-05-19 21:38:19
[教學(xué)目標(biāo)]
1. 了解不等式概念,理解不等式的解集,能正確表示不等式的解集
2. 培養(yǎng)學(xué)生的數(shù)感,滲透數(shù)形結(jié)合的思想.
[教學(xué)重點(diǎn)與難點(diǎn)]
重點(diǎn):不等式的解集的表示.
難點(diǎn):不等式解集的確定.
[教學(xué)設(shè)計]
[設(shè)計說明]
一.問題探知
某班同學(xué)去植樹,原計劃每位同學(xué)植樹4棵,但由于某組的10名同學(xué)另有任務(wù),未能參加植樹,其余同學(xué)每位植 請
樹6棵,結(jié)果仍未能完成計劃任務(wù),若以該班同學(xué)的人數(shù)為x,此時的x應(yīng)滿足怎樣的關(guān)系式?
依題意得4x>6(x-10)
1.不等式:用“>”或“<”號表示大小關(guān)系的式子,叫不等式.
解析:(1)用≠表示不等關(guān)系的式子也叫不等式
(2)不等式中含有未知數(shù),也可以不含有未知數(shù);
(3)注意不大于和不小于的說法
例1 用不等式表示
(1)a與1的和是正數(shù);
(2)y的2倍與1的和大于3;
(3)x的一半與x的2倍的和是非正數(shù);
(4)c與4的和的30%不大于-2;
(5)x除以2的商加上2,至多為5;
(6)a與b兩數(shù)的和的平方不可能大于3.
二.不等式的解
不等式的解:能使不等式成立的未知數(shù)的值,叫不等式的解.
解析:不等式的解可能不止一個.
例2 下列各數(shù)中,哪些是不等是x+1<3的解?哪些不是?
-3,-1,0,1,1.5,2.5,3,3.5
解:略.
練習(xí):1.判斷數(shù):-3,-2,-1,0,1,2,3,是不是不等式2x+3<5 的解?再找出另外的小于0的解兩個.
2.下列各數(shù):-5,-4,-3,-2,-1,0,1,2,3,4,5中,同時適合x+5<7和2x+2>0的有哪幾個數(shù)?
三.不等式的解集
1.不等式的解集:一個含有未知數(shù)的不等式的所有解組成這個不等式的解集.
含有一個未知數(shù),未知數(shù)的次數(shù)是1的不等式,叫做一元一次不等式.
歡迎使用手機(jī)、平板等移動設(shè)備訪問中考網(wǎng),2023中考一路陪伴同行!>>點(diǎn)擊查看